" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
x² + x - 2/x² + 2x - 3
D: x² + 2x - 3 ≠ 0
x² + 2x - 3 ≠ 0
x² - 1 + 2x - 2 ≠ 0
(x - 1)(x + 1) + 2(x - 1) ≠ 0
(x - 1)(x + 1 + 2) ≠ 0
(x - 1)(x + 3) ≠ 0
x - 1 ≠ 0 i x +3 ≠ 0
x ≠ 1 i ≠ x - 3
D : x∈ R \ { -3, 1 }
x² + x - 2/(x - 1)(x + 3) = (x² -1 + x - 1)/(x - 1)(x + 3) =
= [(x - 1)(x + 1) + (x - 1)]/(x - 1)(x + 3) =
= (x - 1)(x + 1 + 1)/(x - 1)(x + 3) =
= (x - 1)(x + 2)/(x - 1)(x + 3) =
= (x + 2)/(x + 3)
b)
4x² + 4x + 1/2x² + 3x + 1
D: 2x² + 3x + 1 ≠ 0
2x² + 2x + x + 1 ≠ 0
2x(x + 1) + x + 1 ≠ 0
(x + 1)(2x + 1) ≠ 0
D : D : x∈ R \ { -1,- 1/2 }
4x² + 4x + 1/2x² + 3x + 1 = (2x + 1)²/ (x + 1)(2x + 1) =
= 2x + 1/x + 1