Skorzystaj z wzorów skróconego mnożenia :
a)(x^2+5)^2
b)(5-2x^2)^2
c)(2x^4+1/2x)^2
d)(x^2+2√3x)(x^2-2√3x)
e)(3-x^2)^3
f)(x+4)^3+(x+4)^2
g)(x^2+x)^3-(x^2-x)^3
h)(5+x^2)(√5-x)(√5+x)
i)(x^2-x+1)(x+1)(1-x^3)
j)x^2-8x+16
k)4x^2+4x+1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Wzory skróconego mnożenia:
(a+b)²=a²+2ab+b² - kwadrat sumy;
(a-b)²=a²-2ab+b² - kwadrat różnicy;
a²-b²=(a-b)(a+b) - różnica kwadratów;
(a+b)³=a³+3a²b+3ab²+b³ - sześcian sumy;
(a-b)³=a³-3a²b+3ab²-b³ - sześcian różnicy;
a³+b³=(a+b)(a²-ab+b²) - suma sześcianów;
a³-b³=(a-b)(a²+ab+b²) - różnica sześcianów.
==============================================
a)(x²+5)²=x⁴+10x²+25
-----------------------------
b)(5-2x²)²=25-20x²+4x⁴
-----------------------------
c)(2x⁴+1/2x)²=4x⁸+2x⁵+ 1/4 x²
-----------------------------
d)(x²+2√3x)(x²-2√3x)=x⁴-(2√3x)²=x⁴-4*3*x²=x⁴-12x²
-----------------------------
e)(3-x²)³=27-27x²+9x⁴-x⁶
-----------------------------
f)(x+4)³+(x+4)²=x³+12x²+48x+64 + x²+8x+16=x³+13x²+56x+80
-----------------------------
g)(x²+x)³-(x²-x)³=
=[(x²+x)-(x²-x)][(x²+x)²+(x²+x)(x²-x)+(x²-x)²]=
=2x[x⁴+2x³+x² + x⁴-x² + x⁴-2x³+x²]=
=2x[3x⁴+x²]=
=2x³(3x²+1)
-----------------------------
h)(5+x²)(√5-x)(√5+x)=(5+x²)(5-x²)=25-x⁴
-----------------------------
i)(x²-x+1)(x+1)(1-x³)=(1-x³)(1-x³)=(1-x³)²=1-2x³+x⁶
-----------------------------
j)x²-8x+16=(x-4)²
-----------------------------
k)4x²+4x+1=(2x+1)²