Odpowiedź:
zad 1
a)
D = < - 4 , 4 >
f(x) = 1/2x + 1
f(- 4) = 1/2 * (- 4) + 1 = - 2 + 1 = - 1
f(4) =1/2x+1 = 1/2 * 4 + 1 = 2 + 1 = 3
ZWf: y ∈ < - 1 , 3 >
b)
D = < - 4 , - 2 > ∪ < 0 , 4 >
f( - 4) = 1/2 * (- 4) + 1 =- 2 + 1 = - 1
f(- 2) = 1/2 *(- 2) + 1 = - 1 + 1 = 0
f(0) = 1/2 * 0 + 1 = 0 + 1 = 1
f(4) = 1/2 * 4 + 1 = 2 + 1 = 3
ZWf: y ∈ < - 1 > 0 ∪ < 1 , 3 >
c)
D = < - 4 , 0 > ∪ < 2 , 4 >
f(2) = 1/2 * 2 + 1 = 1 + 1 = 2
f(4) =1/2* 4 + 1= 2 + 1 = 3
ZWf: y ∈ < - 1 , 1 > ∪ < 2 , 3 >
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
zad 1
a)
D = < - 4 , 4 >
f(x) = 1/2x + 1
f(- 4) = 1/2 * (- 4) + 1 = - 2 + 1 = - 1
f(4) =1/2x+1 = 1/2 * 4 + 1 = 2 + 1 = 3
ZWf: y ∈ < - 1 , 3 >
b)
D = < - 4 , - 2 > ∪ < 0 , 4 >
f( - 4) = 1/2 * (- 4) + 1 =- 2 + 1 = - 1
f(- 2) = 1/2 *(- 2) + 1 = - 1 + 1 = 0
f(0) = 1/2 * 0 + 1 = 0 + 1 = 1
f(4) = 1/2 * 4 + 1 = 2 + 1 = 3
ZWf: y ∈ < - 1 > 0 ∪ < 1 , 3 >
c)
D = < - 4 , 0 > ∪ < 2 , 4 >
f(- 4) = 1/2 * (- 4) + 1 = - 2 + 1 = - 1
f(0) = 1/2 * 0 + 1 = 0 + 1 = 1
f(2) = 1/2 * 2 + 1 = 1 + 1 = 2
f(4) =1/2* 4 + 1= 2 + 1 = 3
ZWf: y ∈ < - 1 , 1 > ∪ < 2 , 3 >