2.Dla jakich wartości parametru "m" równanie ma dwa różne rzeczywiste pierwiastki dodatnie? d)x2−2(m−2)x+m2−2m−3=0
x2−2(m−2)x+m2−2m−3=0
x^2 - 2(m-2)x + m^2 - 2m - 3 = 0czyli a= 1, b= -2*(m-2), c= m^2 - 2m - 3delta = b^2 - 4acdelta = [-2*(m-2)]^2 - 4 * 1 * (m^2 - 2m - 3)delta = (-2m + 4)^2 - 4m^2 + 8m + 12delta = 4m^2 + 16 - 4m^2 + 8m + 12delta = 8m + 28delta > 0czyli8m + 28 > 08m > - 28m > - 3,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x2−2(m−2)x+m2−2m−3=0
x^2 - 2(m-2)x + m^2 - 2m - 3 = 0
czyli a= 1, b= -2*(m-2), c= m^2 - 2m - 3
delta = b^2 - 4ac
delta = [-2*(m-2)]^2 - 4 * 1 * (m^2 - 2m - 3)
delta = (-2m + 4)^2 - 4m^2 + 8m + 12
delta = 4m^2 + 16 - 4m^2 + 8m + 12
delta = 8m + 28
delta > 0
czyli
8m + 28 > 0
8m > - 28
m > - 3,5