http://www.fotosik.pl/pokaz_obrazek/2dccbc7bab943f36.htmlProsze o rozwiązanie. Ważne
a) W(x) = x^3 + x^2 + 3x + 3
W(x) = x^2(x + 1) + 3(x+1)
W(x) = (x+1)(x^2+3)
W(x) = (x+1)(x+√3)(x-√3)
b) W(x) = x^3 + 4x^2 -4x - 16
W(x) = x^2(x+4) -4(x+4)
W(x) = (x+4)(x^2-4)
W(x) = (x+4)(x+2)(x-2)
d) W(x) = 2x(x-3) + 4x(x-3)
W(x) = (x-3)(2x + 4x) W(x) = (x-3)(6x)
2.
a) x^3 + x^2 + 4x + 4 = 0
x^2(x+1) + 4(x+1) = 0
(x+1)(x^2 + 4) = 0
x + 1 = 0 lub x^2 + 4 = 0
x = -1 brak rozwiązań
odp: x=-1
b) x^3 + x^2 - 9x - 9 = 0
x^2(x+1) -9(x+1) = 0
(x+1)(x^2 - 9) = 0
(x+1)(x - 3)(x+3) = 0
x=-1 x=3 x=-3
c) x^2 + 9 = 0
(x+3)(x-3) = 0
x=-3 x=3
d) x^3 - x^2 - 2x = 0
x(x^2 - x - 2) = 0
x = 0 lub x^2 - x - 2 = 0
Δ = 1 + 8 = 9
√Δ = 3
x1 = -4/2 = -2
x2 = 2/2 = 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) W(x) = x^3 + x^2 + 3x + 3
W(x) = x^2(x + 1) + 3(x+1)
W(x) = (x+1)(x^2+3)
W(x) = (x+1)(x+√3)(x-√3)
b) W(x) = x^3 + 4x^2 -4x - 16
W(x) = x^2(x+4) -4(x+4)
W(x) = (x+4)(x^2-4)
W(x) = (x+4)(x+2)(x-2)
d) W(x) = 2x(x-3) + 4x(x-3)
W(x) = (x-3)(2x + 4x)
W(x) = (x-3)(6x)
2.
a) x^3 + x^2 + 4x + 4 = 0
x^2(x+1) + 4(x+1) = 0
(x+1)(x^2 + 4) = 0
x + 1 = 0 lub x^2 + 4 = 0
x = -1 brak rozwiązań
odp: x=-1
b) x^3 + x^2 - 9x - 9 = 0
x^2(x+1) -9(x+1) = 0
(x+1)(x^2 - 9) = 0
(x+1)(x - 3)(x+3) = 0
x=-1 x=3 x=-3
c) x^2 + 9 = 0
(x+3)(x-3) = 0
x=-3 x=3
d) x^3 - x^2 - 2x = 0
x(x^2 - x - 2) = 0
x = 0 lub x^2 - x - 2 = 0
Δ = 1 + 8 = 9
√Δ = 3
x1 = -4/2 = -2
x2 = 2/2 = 1