1.Zapisz w postaci potęgi .
///////////////////////////////
2. Wykonaj działania
/ / / / /
1) 2^{3} * 4^{7} * 8^{3} * 16= 16^{3} * 4^{7} * 16= 16^{3} *2^{3}*4^{7}= 32^{3} *4^{7}= 8*4^{3}*4^{7}=8*4^{10}= 32^{10}
2) (\sqrt{5}-\sqrt{3})^2 - (\sqrt{5}+\sqrt{3})^2= (5-2\sqrt{15}+3)-(5+2\sqrt{15}+3)= 5-2\sqrt{15}+3-5-2\sqrt{15}-3=-2\sqrt{15}-2\sqrt{15}=-4\sqrt{15}
(x+2)^2+3(x+1)(x-1)=(x^{2}+4x+4)+3(x^{2}-1)=(x^{2}+4x+4)+3x^{2}-3=4x^{2}+4x+1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1) 2^{3} * 4^{7} * 8^{3} * 16= 16^{3} * 4^{7} * 16= 16^{3} *2^{3}*4^{7}= 32^{3} *4^{7}= 8*4^{3}*4^{7}=8*4^{10}= 32^{10}
2) (\sqrt{5}-\sqrt{3})^2 - (\sqrt{5}+\sqrt{3})^2= (5-2\sqrt{15}+3)-(5+2\sqrt{15}+3)= 5-2\sqrt{15}+3-5-2\sqrt{15}-3=-2\sqrt{15}-2\sqrt{15}=-4\sqrt{15}
(x+2)^2+3(x+1)(x-1)=(x^{2}+4x+4)+3(x^{2}-1)=(x^{2}+4x+4)+3x^{2}-3=4x^{2}+4x+1