Udowodnij, że jeśli log10 5 = a to log10 2= 1-a.
4log2 5= ?
Wiadomo, że log2 3 = a. Wykaż, że log 4 1/27 = -3/2a.
log10 2 = log10 (10/5) = log10 10 - log10 5 = 1 - a
4log2 5=4 [log10 5 / log10 10] = 4 * [ a / 1] = 4a
log4 1/27 =log2 1/27 / log2 4= log2 (3^(-3))/ log2 2^2= -3log2 3 / 2 = -3a/2 = -3/2a
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
log10 2 = log10 (10/5) = log10 10 - log10 5 = 1 - a
4log2 5=4 [log10 5 / log10 10] = 4 * [ a / 1] = 4a
log4 1/27 =log2 1/27 / log2 4= log2 (3^(-3))/ log2 2^2= -3log2 3 / 2 = -3a/2 = -3/2a