1 . Doprowadź wyrażenia do najprostszej postaci. a) (a-2) do kwadratu + (3a+1) do kwadratu = b) (b+4) - 2(3-2b) do kwadr. = c) 3(c+1) do kwadr. - (c+5)(5-c) = 2. Doprowadź do najprostszej postaci wyrażenia i oblicz ich wartości dla podanych zmiennych . a) 2a (a-4) - 3 (a+3) do kwadr.= dla a= -2 b) (b-1)(1+b)-2 (b+3)(b-5)= dla b= 3 c) 2(c-5)do kwadr. - (2c-3)(4+c)= dla c= 1/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Zadanie 1.
a) (a-2)^{2} + (3a+1)^{2} = a^{2} - 4a + 4 + 9a^{2} + 6a + 1 = 10a^{2} + 2a + 5
b) (b+4) - 2(3-2b)^{2} = b+ 4 -2(9-12b+4b^{2}) = b + 4 - 18 + 24b - 8b^{2} = - 8b^{2} + 25b - 14
c) 3(c+1)^{2} - (c+5)(5-c) = 3c^{2} +6c + 3 - (5c - c^{2} + 25 - 5c) = 3c^{2} +6c + 3+ c^{2} - 25 = 4c^{2} +6c - 22
Zadanie 2.
a) 2(a-4) - 3(a+3)^{2} = 2a^{2} - 8a - 3(a^{2}+6a+9) = 2a^{2} - 8a - 3a^{2} - 18a - 27 = -a^{2} - 26a - 27 =-4+52-27 = 21
b) (b-1)(1+b)-2 (b+3)(b-5)= b + b^{2} - 1 - b -2(b^{2}-5b+3b-15) = b+b^{2}-1-b-ab^{2}+10b-6b+30=-b^{2}+4b+29= -(3)^{2} + 4*3 + 29 = 32
c) 2(c-5)^{2} - (2c-3)(4+c) = 2(c^{2}-10c+25)-(8c + 2c^{2}-12-3c) = 2c^{2} - 20c + 50 - 8c -2c^{2}+12+3c = -25c+62 = -25 * 0,5 + 62 = 49,5