" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
8x^4 + 64x + x^3 + 8 = 0
8x(x^3 + 8) + (x^3 + 8) = 0 - wyłączam wspólny czynnik (x^3+8) przed nawias
(x^3 + 8)(8x+1) = 0 - iloczyn równy zero, gdy mnożnik lub mnozna jest równa zero
x^3 + 8 = 0 ∨ 8x+1 = 0
x^3 = -8 |∛ ∨ 8x = -1 |:8
x = -2 ∨ x = -1/8
H) 4x^5-x^3-4x^2+1=0
4x^5 - 4x^2 - x^3 + 1 = 0
4x^2 (x^3 - 1) - (x^3 - 1) = 0
(x^3-1)(4x^2-1) = 0
x^3 - 1 = 0 ∨ 4x^2 - 1 =0
x^3 = 1 | ∛ ∨ 4x^2 = 1 |:4
x = 1 ∨ x^2 = 1/4 |√
x = 1 ∨ x = -1/2 ∨ x = 1/2