punkt s(1/2,5) jest srodkiem odcinka AC gdzie C(2,8). oblicz pole trojkata ABC oraz promien opisanego na nim okregu jesli wektor AB=[8,-6]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
S = ( 1/2 ; 5 ) - środek odcink AC
C = ( 2; 8 )
-->
AB = [ 8 ; - 6]
Niech
A = ( x1; y1) , zatem
( x1 + 2)/2 = 1/2 i ( y1 + 8)/2 = 5
x1 + 2 = 1 i y1 + 8 = 10
x1 = 1 - 2 = - 1 i y1 = 10 - 8 = 2
zatem
A = ( -1 ; 2)
==============
Niech
B = (x2; y2)
zatem
-->
AB = [ x2 - ( -1); y2 - 2] = [ x2 + 1; y2 - 2 ] = [ 8 ; - 6 ]
czyli
x2 + 1 = 8 i y2 - 2 = - 6
x2 = 8 - 1 = 7 i y2 = - 6 + 2 = - 4
B = ( 7; - 4 )
==============
-->
AC = [ 2 - (-1) ; 8 - 2 ] = [ 3; 6 ]
Obliczam pole trójkąta ABC z wzoru wyznacznikowego
P = I 0,5 det ( AB; AC ) I
========================
P = I 0,5 * ( 8*6 - 3*( -6) ) I = I 0,5 * ( 48 + 18) I = 0,5*66 = 33
P = 33
========
-->
BC = [ 2 - 7; 8 - (-4)] = [ - 5; 12 ]
Długości boków trójkąta:
I AB I^2 = 8^2 + (-6)^2 = 64+ 36 = 100
więc
I AB I = 10
=========
I AC I^2 = 3^2 + 6^2 = 9 + 36 = 45 = 9*5
więc
I AC I = 3 p(5)
============
I BC I^2 = (-5)^2 + 12^2 = 25 + 144 = 169
więc
I BC I = 13
============
Długość promienia okręgu opisanego
P = [ a*b*c]/ ( 4 R)
4 P* R= a*b*c
R = [ a*b*c ] / 4 P
czyli
R = [ 10* 3 p(5) *13]/ (4*33) = [ 390 p(5)]/132 = ( 195/66)*p(5)
R = ( 195/66) * p(5)
=====================
R = około 6,6
=================