Jeśli bedą poprawne rozwiązania to dam naj...
Zadania w załączniku.
lLinki do załączników:
http://zadane.pl/files/227164.jpg
http://zadane.pl/files/227165.jpg
http://zadane.pl/files/227167.jpg
http://zadane.pl/files/227169.jpg
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
<--------------- 2.jpg ------------->
zadanie 1.
a) 2x - y
b) x(y+3)
c) k(k+2)(k+4)
d) a^2 * y
e) (a-2)/b
f) 1/x + 1/y = (x+ y )/ xy
zadanie 2.
a) x+2y suma x i dwukrotności liczby y
b) 3x - y^2 różnica potrojonej liczby x i kwadratu liczby y
c) (x+y)/z iloraz sumy liczb x i y przez liczbe z
d)1/x - 1/y różnica odwrotności liczby x i odwrotności liczby y
e) (a + b + c) kwadrat sumy liczb a, b i c
f) (a + b)c iloczyn sumy liczb a,b i liczby c
zadanie 3.
f(x) = 2x^2 - 3x + 1
a)
f(3) = 18 - 9 + 1 = 10
b)
f(-5) = 50 + 15 + 1 = 66
c)
f(-1/2) = 1/2 + 3/2 + 1 = 3
d)
f(0,1) = 0,02 - 0,3 + 1 = 0,72
zadanie 4.
f(x,y)=3x - 2y + xy
a)
f(3,-2) = 9 + 4 - 6 = 7
b)
f(-1/3, 1/4) = -1 -1/2 - 1/12 = -19/12
c)
f(-0.2,-1.6) = -0,6 + 3,2 + 0,32 = 2,92
zadanie 5.
f(x) = (x^2 + 1) / (2 - x)
a)
f(1) = 2 / 1 = 2
b)
f(1/2) = 5/4 / 3/2 = 10 / 12 = 5/6
c)
f(-1/3) = 10/9 / 7/3 = 10 / (3*7) = 10/21
zadanie 6.
a)1/(x+3)
x!= -3
b) 2/(x-5)
x!=5
c)3/(2x +1)
x!=-1/2
d)4/[(x-3)(x+12)]
x!=3
x!= -12
zadanie 7.
a) -3a + 6b -4 + 2a +2b - 3 = - a + 8b - 7
b) 5a - 4b + 2 - 9a - 2b - 5 = - 4a - 6b - 3
c) x + 3y - 7z - 3x + 2y - z + 2x - 4y + 2z = y - 6z
d) -2x + 4y - 5z - 2y - 4z + 3x + 3z - 2x + 4y = - x + 6y - 6z
e) -2x^2 -5 + 3 - 6x - 2 + x^2 + 3x^2 + 2x - 8 = - 9x - 2x^2 - 7
<----------------KONIEC 2.jpg ------------->
<---------------- 1.jpg ------------->
zadanie 12.
a)
(x+3y+5z)^2 = x^2 + 2x(3y+5z) + 9y^2 + 30yz + 25z^2 = x^2 + 9y^2 + 25z^2 + 6xy + 30yz + 10xz
b)
(-2x + y + 3z)^2 = 4x^2 -4x(y+3z) + y^2 + 6yz + 9z^2 = 4x^2 + y^2 + 9z^2 -4xy +6yz -12xz
c)
(3x - 2y - z)^2 = 9x^2 +6x(-2y - z) + 4y^2 + 4yz + z^2 = 9x^2 + 4y^2 + z^2 - 12xy + 4yz - 6xz
d)
(x^2 + 3x - 2)^2 = x^4 + 2x^2(3x - 2) + 9x^2 -12 x + 4 = x^4 +6x^3 + 5x^2 - 12x + 4
(a + b + c)^2 = a^2 + 2a(b + c) + b^2 + c^2 + 2bc = a^2 + b^2 + c^a + 2ab + 2bc + 2ca
zadanie 13.
a)
(2a - 3b + 4c - d)^2 = (4a^2 - 12ab + 9b^2) + 2(8ac - 12bc +2ad + 3bd) + (16c^2 - 8cd + d^2) =
4a^2 + 9b^2 + 16c^2 + d^2 -12ab +16ac + 4ad - 24bc +6bd -8cd
b)
(a +5b -3c -d)^2 = (a^2 + 10ab + 25b^2) + ( -6ac -30bc -2ad -10bd)+ (9c^2 + 6cd + d^2) =
a^2 + 25b^2 + 9c^2 +d^2 +10ab -6ac -2ad -30bc -10bd +6cd
c)
(x^3 + 2x^2 + 3x + 4)^2 = (x^6 + 4x^5 + 4x^4) + (6x^4 + 12x^3 + 8x^3 + 16x^2) + (9x^2 + 24x + 16) =
x^6 + 4x^5 + 10x^4 + 20x^3 + 25x^2 + 24x + 16
zadanie 14.
a)
[(a+b)^2 + (a-b)^2]/2 = (2a^2 + 2b^a )/ 2 = a^2 + b^2
b)
[(a+b)^2 - (a-b)^2]/2b = (4ab )/ 2b =2a
c)
[(a+2b)^2 + (2a-b)^2]/10 = (5a^2 + 5b^2 ) / 10 = (a^2 + b^2 ) / 2
d)
[(3a-2b)^2 - (3a+2b)^2]/8b = -48ab / 8b = - 6a
zadanie 15.
n - dowolna liczna naturalna
n^2 + n = n(n+1) <-- iloczyn dwóch koljenych liczb naturalnych z których dokładnie jedna jest parzysta, a lioczyn parzystej i
nieparzystej liczby daje parzystą, zatem n^2 + n zawsze podzielne przez 2.
<----------------KONIEC 1.jpg ------------->
<----------------3.jpg ------------->
zadanie 8.
a) (3x + 4y +2z) - (-2x + 4y - 5z) - (x + 3y - 2z) = 4x - 3y + 9z
b) (x - 2y - 3z) - (3x + 2y + z) + (4x - 3y -3z) = 2x - 7y - 6z
c) -(x^2 - 3x + 2) + (4 - 3x + 2x^2) - (7 + 4x - 3x^2) = 4x^2 -4x - 5
d) -(3 - 2x + 4x^2 - 2x^3) + (-x^3 - 2x^2 - 2x - 6) = x^3 -6x^2 - 9
zadanie 9.
a) f(x) = -(x^2 - 3x - 4) + (-2 + x + 3x^2)= 2x^2 + 4x + 2 , f(-3) = 18 - 12 + 2 = 8
b) f(x) = (x^3 - 4x + 2) - (x^2 - 3x - 1) - (x^3 - 2x^2 + x) = x^2 - 2x + 3 , f(-2) = 4 + 4 + 3 = 11
c) f(a,b) = (2a - 3b) - (4a + 2b) - (-7a + 4b) = 5a -9b , f(-7/2 , 4/3) = -35/2 - 36/3 = (-105 - 72 )/ 6 = -177/6
d) f(a,b) = (7a - 4b + 3) - (5a - 3b + 1) = 2a - b + 2, , f(4.5 , -3.3) = 9 - 3,3 + 2 = 7,7
zadanie 10.
a) (x-2)(x^2 - 3x - 1) = x^3 - 5x^2 + 5x + 2
b) (4 - 3x + 2x^2)(2x - 3) = 4x^3 -12x^2 + 17x - 12
c) (2a - b)(3a + 4b) - 2(a + 3b)(b - 2a) = 6a^2 + 4a^2 - 4b^2 - 6b^2 + 5ab + 10ab = 10a^2 - 10b^2 + 15ab
d) -(4a - 3b)(a - b) + 3(a+2b)(b - 3a) = -4a^2 - 9a^2 - 3b^2 + 6b^2 -7ab -15ab = - 13a^2 + 3b^2 - 22ab
zadanie 11.
a)
f(x) = (1/2 x - 3)( 2x^2 - 4x + 8) = x^3 - 8x^2 + 16x - 24, f(-1) = -1 - 8 - 16 -24 = -49
b)
f(x) = (3 - 2x - x^2)(2x - 1) = -3x^3 - 5x^2 + 8x - 3, f(1/2) = - 3/8 -5/4 + 4 - 3 = - 5/8
c)
f(a,b) = 3(a - b)(b - 2a) - 2(2a - b)(a + 3b) = - 6a^2 - 4a^2 - 3b^2 + 6b^2 + 9ab - 10ab = - 10a^2 + 3b^2 - ab
f(-1 , 1/2) = -10 + 3/4 + 1/2 = 8,75
d)
f(a,b) = -4(a + b)(2a - 3b) + 2(3a - 2b)(a + 4b) = -2a^2 -4b^2 + 24ab
f(-2 , -0,5) = -8 - 1 + 24 = 15
zadanie 12.
a)
[4(x^2 - 3x + 2) - 3(2 - 5x + 3x^2)](4x + 5) = (-5x^2 + 3x + 2)(4x + 5) = -20x^3 - 13x^2 + 23x + 10
b)
(2x + 3)[5(x^2 + 2x - 3) + 2(6 - 4x - 2x^2)] = (2x + 3)(x^2 +2x - 3) = 2x^3 + 7x^2 + 9
c)
(4 - 3x)[-3(7- 2x - 3x^2) - 10(x^2 + x - 3)] = (4 - 3x)(-x^2 - 4x + 9) = -3x^3 + 8x^2 - 43x + 36
d)
[-2(6x^2 + 4x - 5) + 5(3x^2 - x - 2)](x + 3) = (3x^2 - 13x)(x + 3) = 3x^3 - 4x^2 -39x
<----------------KONIEC 3.jpg ------------->
<---------------- 4.jpg ------------->
zadanie 13.
A = x^2 - 3x + 7
B = 3x^2 - 5x + 1
C = -2x^2 + x + 2
A + B = 4x^2 - 8x + 8
C - A = -3x^2 + 4x - 5
A + 2B - C = 9x^2 - 12x + 7
A * B = 3x^4 -14x^3 + 7x + 7
C^2 = 4x^4 - 4x^3 - 7x^2 + 4x + 4
zadanie 14.
A = x^3 - 2x + 5
B = - 2x^3 + x^2 - 3
C = - 4x^3 - 4x^2 + x
A+B-C = 3x^3 + 5x^2 - 3x + 2
2A - B + 3C = - 8x^3 - 13x^2 - x + 13
A*B = - 2x^6 + x^5 + 4x^4 - 15x^3 + 5x^2 +6x - 15
zadanie 15.
4(a + b + h) + 3(2a + h)
zadanie 16.
a) (a+2)^2 = a^2 + 4a + 4
b) (b + 4)^2 = b^2 + 8b + 16
c) (2c + 1)^2 = 4c^2 + 4c + 1
d) (3d + 7)^2 = 9d^2 + 42d + 49
e) (e + 1/3)^2 = e^2 + 2e/3 + 1/9
zadanie 17.
a) 29^2 = (30 - 1)^2 = 900 - 60 + 1 = 841
b) 21^2 = (20 + 1)^2 = 400 + 40 + 1 = 441
c) 72^2 = (70 + 2)^2 = 4900 + 280 + 4 = 5184
d) 35^2 = (30+ 5) ^2 = 900 + 300 + 25 = 1225
e) 29*31 = (30 + 1)(30 - 1) = 900 - 1 = 899
f) 88*92= (90 - 2)(90+2) = 8100 - 4 = 8096
zadanie 18.
a)
(a - 2)^2 + (3a + 1)^2 = a^2 - 4a + 4 + 9a^2 + 6a + 1 = 10a^2 +2a + 5
b)
(b + 4)(b - 4) - 2(3 - 2b)^2 = b^2 -16 - 8b^2 + 24b - 18 = -7b^2 + 24b - 34
c)
3(c + 1)^2 - (c + 5)(5 - c) = c^2 - 25 + 3c^2 +6c + 3 = 4c^2 + 6c - 22
zadanie 19.
a)
f(a) = 2a(a - 4) - 3(a + 3)^2 = 2a^2 - 8a - 3a^2 - 18a - 27 = -a^2 - 26a - 27
f(-2)= - 4 + 52 - 27 = 21
b)
f(b) = (b - 1)(1 + b) - 2(b + 3)(b - 5) = b^2 - 1 - 2b^2 + 4b + 30 = - b^2 + 4b + 29
f(3)= - 9 + 12 + 29 = 32
c)
f(c)= 2(c - 5)^2 - (2c - 3)(4 + c) = 2c^2 - 20c + 50 - 2c^2 - 5c + 12 = -25c + 62
f(1/2) = 12,5 + 62 = 74,5
<----------------KONIEC 4.jpg ------------->