Obliczyć tgα jeżeli sinα − cosα = √2/2 , α∊(π/4,π/2)
sin\alpha - cos\alpha = \frac{\sqrt{2}}{2} //:cos\alpha obustronnie dzielimy przez cos\alpha
\frac{sin\alpha}{cos\alpha} - 1 = \frac{\sqrt{2}}{2}
\frac{sin\alpha}{cos\alpha}= tg\alpha, tak więc:
tg\alpha = \frac{\sqrt{2}}{2} - 1
tg\alpha = \frac{\sqrt{2}-2}{2}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
sin\alpha - cos\alpha = \frac{\sqrt{2}}{2} //:cos\alpha obustronnie dzielimy przez cos\alpha
\frac{sin\alpha}{cos\alpha} - 1 = \frac{\sqrt{2}}{2}
\frac{sin\alpha}{cos\alpha}= tg\alpha, tak więc:
tg\alpha = \frac{\sqrt{2}}{2} - 1
tg\alpha = \frac{\sqrt{2}-2}{2}