" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x³-3x²+4x-12=0
x²(x-3)+4(x-3)=0
(x-3)(x²+4)=0 ⇔ x-3=0 lub x²+4=0 , x²+4>0 dla kazdego x∈R
x=3
b)
x^4-4x³=x+4
x^4+4x³-x-4=0
x³(x+4) -1(x+4)=0
(x+4)(x³-1)=0 ⇔x+4=0 lub x³-1=0
x= -4 lub x³=1
x=1
x∈ { -4 ; 1}
cc) x³=1/2x²+2x-1
x³-1/2x³-2x+1=0
x²(x-1/2) - 2(x-1/2)=0
(x-1/2)(x²-2)=0 ⇔ x-1/2=0 lub x²-2=0
x=1/2 lub x²=2
x= -√2 lub x=√2
x∈{ -√2 ; 1/2 ; √2}