Rozwiąż:
3(x-2) < jedna trzecia x + 10
x + 41 = (2x+13) - (x-28)
6x - x + (2x+3) = 2(2-x)
x/3 - x/6 = 4 + x/2
2x+15 = 16 (1+0,125x)
Ze wzoru E = mu do kwadratu/2 wyznacz m.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3(x-2) < ⅓x + 10
3x-6 < ½x+10
2½x < 16 / * ⅖
x < 6,4
x + 41 = (2x+13) - (x-28)
x+41 = 2x+13-x+28
0 = 0
6x - x + (2x+3) = 2(2-x)
6x-x+2x+3 = 4-2x
9x = 1 /:9
x = 1/9
x/3 - x/6 = 4 + x/2 /obustronnie mnożymy przez 6
2x-x = 24+3x
-24 = 2x /:2
-12 = x
2x+15 = 16 (1+0,125x)
2x+15 = 16+2x
0 ≠ 1
Ze wzoru E = mu do kwadratu/2 wyznacz m.
E=mu²/2 ?*2
2E = mu² /:u²
m = 2E/u²
3(x-2) < 1/3 x + 10
3x-6<1/3x+10
3x-1/3x<10+6
2 1/3x<16
7/3x<16/*3/7
x<48/7
x<6 6/7
x + 41 = (2x+13) - (x-28)
x+41=2x+13-x+28
x+41=x41
x-x=41-41
0=0
6x - x + (2x+3) = 2(2-x)
5x+2x+3=4-2x
7x+3=4-2x
7x+2x=4-3
9x=1/9
x=1/9
x/3 - x/6 = 4 + x/2razy6
6/3x-6/6x=24+6/2x
2x-x=24+3x
x-3x=24
2x=24/2
x=12
2x+15 = 16 (1+0,125x)
2x+15=16+2x
2x-2x=16-15
0x=1
Ze wzoru E = mu do kwadratu/2 wyznacz m.
E=mu²/2*2
2E=mu²
mu²=2E/u²
m=2E/u²