1. Oblicz:
a)log₂8 + log½4 + log₉81
b)log 0,1 + log 1000 + log0,1 10
c)log₃27 - log₄2 - log₂ 1/8
d)log₃₆6 + log₁₆4 - log₈2
2. Oblicz:
a)log₆2 + log₆18
b)log 15 - log 3/2
c)log₆4 +log₆27 - log₆3
d)log 1/2 - log 25 - log 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1. a)log₂8 + log½4 + log₉81
3+(-2)+2=3
b)log 0,1 + log 1000 + log0,1 10
-1+3+(-1)=-2+3=1
c)log₃27 - log₄2 - log₂ 1/8
3-1/2-(-3)=5 1/2
d)log₃₆6 + log₁₆4 - log₈2
1/2+1/2-1/3=2/3
2. Z własności logarytmów o tych samych podstawach (np. log₆ a + log ₆b = log ₆(a*b) )
a)log₆2 + log₆18
log₆(2*18)=log₆36=2
b)log 15 - log 3/2
log (15:3/2)= log 10=1
c)log₆4 +log₆27 - log₆3
log₆(4*27)-log₆3
log₆108-log₆3
log₆(108:3)=log₆36=2
d)log 1/2 - log 25 - log 2
log(1/2:25)-log2
log 1/50 - log2
log(1/50 : 2)=log 1/100=-2
1.
logg₂8 + log½4 + log₉81 = log₂ 2³ + log½ (1/2)^-2 + log₉ 9² = 3 + (-2) + 2 = 3
b)
log 0,1 + log 1000 + log0,1 10 = log 10^(-1) + log 10³ + log0,1 0,1^(-1) = -1 + 3 + (-1) = 1
c)
log₃27 - log₄2 - log₂ 1/8 = log₃ 3³ - log₄ 4^(1/2) - log₂ 2^(-3) = 3 - 1/2 - (-3) = 2,5 + 3 = 5,5
d)
log₃₆6 + log₁₆4 - log₈2 = log₃₆ 36^(1/2) + log₁₆ 16^(1/2) - log₈ 8^(1/3) = 1/2 + 1/2 - 1/3 = 2/3
2.
a)
log₆2 + log₆18 = log₆ (2 * 18) = log₆ 36 log₆ 6² = 2
b)
log 15 - log 3/2 = log (15 : 3/2) = log (15 * 2/3) = log 10 = 1
c)
log₆4 +log₆27 - log₆3 =log₆(4 * 27) - log₆3 =log₆108 - log₆3 =log₆(108 : 3)=log₆ 36= log₆ 6² =2
d)
log 1/2 - log 25 - log 2 = log(1/2 : 25) - log 2 = log(1/2 * 1/25) - log 2 = log (1/50 : 2) = log (1/50 * 1/2) = log 1/100 = log 10^(-2) = -2