October 2018 1 38 Report

Udowodnij nierówność :

1. a^3 + b^3 \geq \frac{1}{4} (a+b)^3 gdy a,b >0


2. \frac{a^3 - b^3}{2} \geq \frac {a-b}{2})^3 (a-b/2 całe jest do sześcianu) gdy a>b


3. \frac{a^2}{a^4 +1} \leq \frac{1}{2}


4. \frac{a+b}{2} \geq \sqrt{ab} gdy a,b >0


Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.