Diketahui f(x) = 1/2 Tan 2x + sec 2x dan 0 < sama dengan dari x < sama dengan dari 2π, nilai stasioner yang dicapai oleh grafik f(x) adalah? a. 2 + 1/3 √3 b. 1/3 √6 c. 5/6 √3 d. 2-1/3 √3 e. -1/2 √3 Mohon dijawab dengan caranya :)
mbrainly
F(x) = 1/2 tan 2x + sec 2x nilai stasioner: f '(x) = 0 sec² 2x + 2 sec 2x tan 2x = 0 sec 2x (sec 2x + 2tan 2x) = 0 sec 2x = 0 (TM) atau sec 2x + 2tan 2x = 0
nilai stasioner:
f '(x) = 0
sec² 2x + 2 sec 2x tan 2x = 0
sec 2x (sec 2x + 2tan 2x) = 0
sec 2x = 0 (TM) atau sec 2x + 2tan 2x = 0
sec 2x + 2tan 2x = 0
1/cos 2x + 2sin 2x/cos 2x = 0
(1 + 2 sin 2x)/cos 2x = 0
1 + 2sin 2x = 0
sin 2x = -1/2
sin 2x = sin (7/6 π)
2x = 7/6 π + k.2π .......(1)
2x = -4/3π + k.2π .......(2)
Persamaan (1)
2x = 7/6 π + k.2π
x = 7/12 π + k.π
k = 0 → x = 7/12 π
k = 1 → x = 19/12 π
Persamaan (2)
2x = -4/3π + k.2π
x = -2/3π + k.π
k = 1 → x = 1/3 π
k = 2 → x = 4/3π
x = 1/3 π → f(1/3π) = 1/2 tan (2/3π) + sec (2/3π)
= 1/2 . (-√3) + (-2)
= -1/2√3 - 2
x = 7/12π → f(7/12π) = 1/2 tan (7/6π) + sec (7/6π)
= 1/2(√3) + (-2/3√3)
= 1/2√3 - 2/3√3
x = 4/3π → f(4/3π) = 1/2 tan 8/3π + sec (8/3π)
= 1/2 . (-√3) + (-2)
= -1/2√3 - 2
x = 19/12π → f(19/12π) = 1/ tan (19/6π) + sec (19/6π)
(tidak terdefenisi)
tidak ada jawaban