Wyznacz miejsce zerowe funkcji f(x)=3x+b, gdzie b=log1/2 2pierwiastek z 2
b=log1/2 2√2 = log1/2 (2 * 2^(1/2)) = log1/2 (2^(3/2) ) = log1/2 (1/2)^(-3/2) = -3/2 * log1/2 (1/2) = -3/2
f(x) = 3x +b
f(x) = 3x - 3/2
3x - 3/2 = 0
3x = 3/2
x = 3/2 * 1/3
x = 1/2 ---------- miejsce zerowe
log(1/2)2√2=x
1/2^x= 2√2
2^-x = 2^3/2
-x=3/2
x=-3/2
więc:
y=3x-3/2
-3x=-3 /2
x=3/6=1/2
odp m.z= (1/2 , 0)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
b=log1/2 2√2 = log1/2 (2 * 2^(1/2)) = log1/2 (2^(3/2) ) = log1/2 (1/2)^(-3/2) = -3/2 * log1/2 (1/2) = -3/2
f(x) = 3x +b
f(x) = 3x - 3/2
3x - 3/2 = 0
3x = 3/2
x = 3/2 * 1/3
x = 1/2 ---------- miejsce zerowe
log(1/2)2√2=x
1/2^x= 2√2
2^-x = 2^3/2
-x=3/2
x=-3/2
więc:
y=3x-3/2
-3x=-3 /2
x=3/6=1/2
odp m.z= (1/2 , 0)