// mencari invers f(x) //
f(x) = 1/x+1
y = 1/x+1
y-1 = 1/x
x(y-1) = 1
x = 1/(y-1)
f⁻¹(x) = 1/(x-1)
//mencari g(2) //
(f⁻¹o(fog))(x) = 1/(1/(1+x)-1)
g(x) = 1/((1-(1+x))/(1+x))
g(x) = 1/(-x/(1+x))
g(x) = (1+x)/-x
g(2) = (1+2)/-(2)
g(2) = 3/-2
g(2) = -3/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
// mencari invers f(x) //
f(x) = 1/x+1
y = 1/x+1
y-1 = 1/x
x(y-1) = 1
x = 1/(y-1)
f⁻¹(x) = 1/(x-1)
//mencari g(2) //
(f⁻¹o(fog))(x) = 1/(1/(1+x)-1)
g(x) = 1/((1-(1+x))/(1+x))
g(x) = 1/(-x/(1+x))
g(x) = (1+x)/-x
g(2) = (1+2)/-(2)
g(2) = 3/-2
g(2) = -3/2