1.wyznacz ciąg geometryczny wiedząc że:
a3=4
a8=256
2 .wyznacz ciąg arytmetyczny mając dane:
a2=4
a6=20
to pilne na jutro mam na egzamin
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
z.1
a3 = 4 oraz a8 = 256
Mamy
a3 = a1*q^2 oraz a8 = a1*q^7
a8 : a3 = [a1*q^7] : [ a1*q^2 ] = q^5
ale a8 : a3 = 256 : 4 = 64
q^5 = 64
q = p 5st (64)
a1*q^2 = 4 ---> a1 = 4 : q^2 = 4 : [p 5st (64)]^2 = 4 : p5st(4096)
===============
z.2
a2 = 4
a6 = 20
a2 = a1 + r
a6 = a1 + 5r
a6 - a2 = [a1 +5r] - [a1 + r] = 4r
ale a6 - a2 = 20 - 4 = 16
czyli 4r = 16 / : 4
r = 4
====
a2 = a1 + r ---> a1 = a2 - r = 4 - 4 = 0
Odp. a1 = 0 oraz r = 4
===========================
1)
4=q²a₁
256=q⁷a₁
a₁=4/q²
256=q⁷a₁
256=q⁷(4/q²)
256=4q⁵
q⁵=64
q=⁵√64
q=64^(1/5)
q=(2⁶)^(1/5)
q=2^(6/5)
a₁=4/(2^(6/5))²
a₁=4/(2^(12/5))
a₁=2²/(2^(12/5))
a₁=2^(2-12/5)
a₁=2^(-2/5)
an=(2^(6/5))^(n-1)*2^(-2/5)
an=2^((6n-6)/5)*2^(-2/5)
an=2^((6n-8)/5)
2)
4=a₁+(2-1)r
20=a₁+(6-1)r
4=a₁+r |*-1
20=a₁+5r
-4=-a₁-r
20=a₁+5r
----------
16=4r
r=4
4=a₁+4
a₁=0
an=(n-1)*4
an=4n-4