1.W ciągu geometrycznym a_{10}= 24, a iloraz wynosi q=\sqrt{2}.
a) znajdz wyraz pierwszy i czawrt tego ciagu.
b) oblicz sume dziesieciu pozostalych poczatkowych wyrazow tego ciagu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a10=24
q=√2
a)
a10=a1*q⁹
24=a1*(√2)⁹
24=a1*16√2
a1=24/(16√2)=6/(4√2)=3/(2√2)=(3√2)/4
a4=a1*q³
a4=(3√2)/4*(√2)³=(3√2)/4*2√2=(6*2)/4=12/4=3
b)
s10= (a1*(1-q^n))/1-q= [(3√2)/4*(1-(√2)¹⁰)]/(1-√2)
s10= [(3√2)/4*(1-32)]/(1-√2)
s10= [(3√2)/4 *(-31)]/(1-√2)
s10=(-93√2/4)/(1-√2) * (1+√2)/(1+√2)
s10=(-93√2/4-93/2)/1-2
s10=(-93√2/4-186/4)/-1
s10=93√2/4+186/4
s10=(93√2+186)/4