Oblicz prawdopobienstwo P(a' iloczyn B') jesli P( A' ) = 3/4 a P( B' ) = 7/12 i P(A iloczyn B) = 1/12.
'U' - suma
'/\' - iloczyn
P(A'UB')=P(A')+P(B')-P(A'/\B') => P(A'/\B')=-P(A'UB')+P(A')+P(B')
P(A'UB')=1-P(A/\B) =>P(A'/\B')=-1+(1/12)+(3/4)+(7/12)=1/12+9/12+7/12-1=17/12-1=5/12
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
'U' - suma
'/\' - iloczyn
P(A'UB')=P(A')+P(B')-P(A'/\B') => P(A'/\B')=-P(A'UB')+P(A')+P(B')
P(A'UB')=1-P(A/\B) =>P(A'/\B')=-1+(1/12)+(3/4)+(7/12)=1/12+9/12+7/12-1=17/12-1=5/12