1.2. - podstawa - wysokość
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
1.
![x-[(x-18) +0,40(x-18)]=x-1,4(x-18) x-[(x-18) +0,40(x-18)]=x-1,4(x-18)](https://tex.z-dn.net/?f=x-%5B%28x-18%29+%2B0%2C40%28x-18%29%5D%3Dx-1%2C4%28x-18%29)
- podstawa
- wysokość
![P_1= \frac{ah}{2}= \frac{a(a-4)}{2} P_1= \frac{ah}{2}= \frac{a(a-4)}{2}](https://tex.z-dn.net/?f=P_1%3D+%5Cfrac%7Bah%7D%7B2%7D%3D+%5Cfrac%7Ba%28a-4%29%7D%7B2%7D)
![P_2-P_1= \frac{a(h+10)}{2}= \frac{a(a-4+10)}{2}= \frac{a(a+6)}{2} P_2-P_1= \frac{a(h+10)}{2}= \frac{a(a-4+10)}{2}= \frac{a(a+6)}{2}](https://tex.z-dn.net/?f=P_2-P_1%3D+%5Cfrac%7Ba%28h%2B10%29%7D%7B2%7D%3D+%5Cfrac%7Ba%28a-4%2B10%29%7D%7B2%7D%3D+%5Cfrac%7Ba%28a%2B6%29%7D%7B2%7D)
![P_2-P_1=\frac{a(a+6)}{2}- \frac{a(a-4)}{2}= \frac{a^2}{2}+3a- \frac{a^2}{2}+2a=5acm^2 P_2-P_1=\frac{a(a+6)}{2}- \frac{a(a-4)}{2}= \frac{a^2}{2}+3a- \frac{a^2}{2}+2a=5acm^2](https://tex.z-dn.net/?f=P_2-P_1%3D%5Cfrac%7Ba%28a%2B6%29%7D%7B2%7D-+%5Cfrac%7Ba%28a-4%29%7D%7B2%7D%3D+%5Cfrac%7Ba%5E2%7D%7B2%7D%2B3a-+%5Cfrac%7Ba%5E2%7D%7B2%7D%2B2a%3D5acm%5E2)
2.