" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
P - pole rombu = a²sinα = 25 cm²
α = 50°
sin50° = 0,7660
25 = a² * 0,7660
a² = 25 : 0,7660 = ≈ 32,6
a - bok rombu = √32,6 = ≈ 5,7 cm
P = ah
h - wysokość rombu = P/a = 25/5,7 = ≈ 4,4 cm
zad 2
a - bok rombu = 8 cm
∡ ostry α = 60°
P - pole rombu = a²sinα = 8² * √3/2 = 64√3/2 = 32√3 cm²
d₁ - jedna przekątna
d₂ - druga przekątna
(d₂/2) : a = sin(α/2) = sin30° = 1/2
(d₂/2) = a * 1/2 = 8 cm * 1/2 = 4 cm
d₂ = 2 * 4 cm = 8 cm
(d₁/2) : a = cos(α/2) = cos30° = √3/2
(d₁/2) = a * √3/2 = 8√3/2 = 4√3 cm
d₁ = 2 * 4√3 = 8√3 cm
zad 3
d₁ - jedna przekątna = 16 cm
d₂ - druga przekątna = 12 cm
P - pole rombu = d₁d₂/2 = 16 cm * 12 cm/2 = 192 cm²/2 = 96 cm²
a - bok rombu = √[(d₁/2)² + (d₂/2)²] = √[(16/2)² + (12/2)²] = √(8² + 6²) =
= √(64 + 36) = √100 = 10 cm
P - pole = a²sinα
sinα = P/a² = 96 cm² : 10² cm² = 96 cm² : 100 cm² = 0,96
α - kąt ostry rombu = ≈ 73°45'
zad 4
P = pole rombu = 32 cm²
d₁ - jedna przekątna = 16 cm
d₂ - druga przekątna = ?
P = d₁d₂/2
2P = d₁d₂
d₂ = 2P/d₁ = 2 * 32/16 = 2 * 2 = 4 dm
a - bok rombu = √[(d₁/2)² + (d₂/2)²] = √(16/2)² + (4/2)²] = √(8² + 2²) = √(64 + 4) =
= √68 cm = 2√17 cm