" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
zad1
boki Δ maja dlugosc a=5
b=6
c=7
polowa obwodu Δ p=1/2(a+b+c)=1/2·(5+6+7)=18/2=9
ze wzoru Herona liczymy pole Δ
P=√[9(9-5)(9-6)(9-7)]=√(9·4*3·2)=√216=6√6 j^2
zad2
a=7
b=8
c=9
polowa obwodu Δ p=1/2(7+8+9)=1/2·24=12
promien okregu wpisanego r=2P/(a+b+c)=(2·12)/(7+8+9)=24/24=1
promien okregu opisanego R=abc/(4P)=(7·8·9)/(4·12)=504/48=10,5
b)mamy Δ rownoramiennya=22 to 1/2a=11 i ramie b=12
11²+h²=12²
h²=144-121
h=√23
PΔ=1/2·a·h=1/2·22·√23=11√23
r=2P(a+2b)=(22√23)/(22+2·12)=22√23/46=(11√23)/23
R=abc/4P=(22·12·12)/(4·11√23)=3164/44√23=72/√23=(72√23)/23
c)a=12
b=16
c=20
jest to Δ prostokatny bo
a²+b²=c²
czyli
PΔ=1/2ab=1/2·12·16=96 cm²
r=2P/(a+b+c)=(2·96)/(12+16+20)=192/48=4
R=abc/4P=(12·16·20)/(4·96)=3840/(384)=10