1. nilai sin 195° cos 15° adalah 2. himpunan penyelesaian persamaan 4 sin² x + 4 cos x = 1 untuk -π ≤ x ≤ π adalah 3. jika √3 sin x = cos x , maka x = 4. 2 sin 157,5° cos 157,5° =
arsetpopeye
) sin 195 cos 15 = 1/2 (sin (195 + 15) + sin (195 - 15)) = 1/2 (sin 210 + sin 180) = 1/2 (-1/2 + 0) = -1/4
2) 4sin^2 x + 4cos x = 1 4(1 - cos^2 x) + 4 cos x - 1 = 0 4 - 4 cos^2 x + 4 cos x - 1 = 0 -4 cos^2 x + 4 cos x + 3 = 0 4 cos^2 x - 4 cos x - 3 = 0 Misal cos x = a 4a^2 - 4a - 3 = 0 (2a - 3)(2a + 1) = 0 a = 3/2 atau a = -1/2 Karena : -1 ≤ cos x ≤ 1 maka a = -1/2 Cos x = -1/2 Cos x = cos 120° atau cos x = cos (-120°) Karena -π ≤ x ≤ π maka x = {-120°, 120°} = {-2/3 π, 2/3 π}
3)√3 sin x = cos x Sin x / cos x = 1/√3 Tan x = 1/3 √3 X = 30° atau x = 210°
4) 2 sin 157,5 cos 157,5 = sin 2(157,5) = sin 315 = - sin 45 = - 1/2 √2
= 1/2 (sin 210 + sin 180)
= 1/2 (-1/2 + 0)
= -1/4
2) 4sin^2 x + 4cos x = 1
4(1 - cos^2 x) + 4 cos x - 1 = 0
4 - 4 cos^2 x + 4 cos x - 1 = 0
-4 cos^2 x + 4 cos x + 3 = 0
4 cos^2 x - 4 cos x - 3 = 0
Misal cos x = a
4a^2 - 4a - 3 = 0
(2a - 3)(2a + 1) = 0
a = 3/2 atau a = -1/2
Karena : -1 ≤ cos x ≤ 1 maka a = -1/2
Cos x = -1/2
Cos x = cos 120° atau cos x = cos (-120°)
Karena -π ≤ x ≤ π maka x = {-120°, 120°} = {-2/3 π, 2/3 π}
3)√3 sin x = cos x
Sin x / cos x = 1/√3
Tan x = 1/3 √3
X = 30° atau x = 210°
4) 2 sin 157,5 cos 157,5 = sin 2(157,5) = sin 315 = - sin 45 = - 1/2 √2