Odpowiedź:
a ) [tex]x_n = 4 - 5*( n - 1)[/tex]
więc [tex]x_1 = 4 - 5*0 = 4[/tex]
[tex]x_2 = 4 - 5*( 2 - 1) = 4 - 5 = - 1[/tex]
r = [tex]x_2 - x_1 = - 1 - 4 = - 5[/tex]
Wzór rekurencyjny
[tex]x_1 = 4\\x_{n+1} = x_n - 5[/tex]
==============
b ) [tex]y_n = -2,5 + \frac{n}{2}[/tex]
więc [tex]y_1 = -2,5 + \frac{1}{2} = - 2[/tex]
[tex]y_2 = - 2,5 + 1 = - 1,5[/tex]
r = -1,5 - ( - 2) = 0,5
[tex]y_1 = - 2\\y_{n+1} = y_n + 0,5[/tex]
================
c ) [tex]z_n = 104 - 4 n[/tex]
więc [tex]z_1 = 104 - 4*1 = 100\\z_2 = 104 - 4*1 = 96[/tex]
r = 96 - 100 = - 4
[tex]z_1 =100\\z_{n+1} = z_n - 4[/tex]
=====================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) [tex]x_n = 4 - 5*( n - 1)[/tex]
więc [tex]x_1 = 4 - 5*0 = 4[/tex]
[tex]x_2 = 4 - 5*( 2 - 1) = 4 - 5 = - 1[/tex]
r = [tex]x_2 - x_1 = - 1 - 4 = - 5[/tex]
Wzór rekurencyjny
[tex]x_1 = 4\\x_{n+1} = x_n - 5[/tex]
==============
b ) [tex]y_n = -2,5 + \frac{n}{2}[/tex]
więc [tex]y_1 = -2,5 + \frac{1}{2} = - 2[/tex]
[tex]y_2 = - 2,5 + 1 = - 1,5[/tex]
r = -1,5 - ( - 2) = 0,5
Wzór rekurencyjny
[tex]y_1 = - 2\\y_{n+1} = y_n + 0,5[/tex]
================
c ) [tex]z_n = 104 - 4 n[/tex]
więc [tex]z_1 = 104 - 4*1 = 100\\z_2 = 104 - 4*1 = 96[/tex]
r = 96 - 100 = - 4
Wzór rekurencyjny
[tex]z_1 =100\\z_{n+1} = z_n - 4[/tex]
=====================
Szczegółowe wyjaśnienie: