[tex]a)\ \ \dfrac{2^3}{2^2}\cdot8=2^{3-2}\cdot2^3=2^1\cdot2^3=2^{1+3}=2^4\\\\\\b)\ \ \dfrac{3^4\cdot27}{81}=\dfrac{3^4\cdot3^3}{3^4}=\dfrac{3^7}{3^4}=3^{7-4}=3^3\\\\\\c)\ \ 5^4\cdot125:(5^2)^3=5^4\cdot5^3:5^6=5^{4+3-6}=5^1\\\\\\d)\ \ \frac{1}{8}\cdot2^3\cdot2^3=8^{-1}\cdot2^6=(2^3)^{-1}\cdot2^6=2^{-3}\cdot2^6=2^{-3+6}=2^3\\\\\\Zastosowane\ \ wzory\\\\a^m\cdot a^n=a^{m+n}\\\\\frac{a^m}{a^n}=a^{m-n}\\\\(a^m)^n=a^{m\cdot n}\\\\(\frac{1}{a})^n=a^{-n}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]a)\ \ \dfrac{2^3}{2^2}\cdot8=2^{3-2}\cdot2^3=2^1\cdot2^3=2^{1+3}=2^4\\\\\\b)\ \ \dfrac{3^4\cdot27}{81}=\dfrac{3^4\cdot3^3}{3^4}=\dfrac{3^7}{3^4}=3^{7-4}=3^3\\\\\\c)\ \ 5^4\cdot125:(5^2)^3=5^4\cdot5^3:5^6=5^{4+3-6}=5^1\\\\\\d)\ \ \frac{1}{8}\cdot2^3\cdot2^3=8^{-1}\cdot2^6=(2^3)^{-1}\cdot2^6=2^{-3}\cdot2^6=2^{-3+6}=2^3\\\\\\Zastosowane\ \ wzory\\\\a^m\cdot a^n=a^{m+n}\\\\\frac{a^m}{a^n}=a^{m-n}\\\\(a^m)^n=a^{m\cdot n}\\\\(\frac{1}{a})^n=a^{-n}[/tex]