a)
[tex](a + 4b) \times (2a + 1) = 2 {a}^{2} + a + 8ab + 4b[/tex]
b)
[tex] \frac{3a \times (a + 2b)}{2} = \frac{3 {a}^{2} + 6ab }{2} [/tex]
c)
[tex](2a - b) \times (3 - a) = 6a - 2 {a}^{2} - 3b + ab[/tex]
d)
[tex] \frac{(a + b + a) \times (a + 2)}{2} = \frac{(2a + b) \times (a + 2)}{2} = \frac{2 {a}^{2} + 4a + ab + 2b }{2} [/tex]
Odpowiedź:
Pole prostokąta P = (a + 4b)(2a + 1) = 2a² + 8ab + a + 4b
Pole trójkąta = 3a * (a + 2b) = 3a² + 6ab
Pole równoległoboku = (3 - a)(2a - b) = 6a - 2a² - 3b + ab =
= - 2a² + 6a + ab - 3b
Pole trapezu = 1/2 * (a + b + a) * (a + 2) = 1/2(2a + b)(a + 2) =
= 1/2(2a² + ab + 4a + 2b) = a² + 2a + ab/2 + b
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
a)
[tex](a + 4b) \times (2a + 1) = 2 {a}^{2} + a + 8ab + 4b[/tex]
b)
[tex] \frac{3a \times (a + 2b)}{2} = \frac{3 {a}^{2} + 6ab }{2} [/tex]
c)
[tex](2a - b) \times (3 - a) = 6a - 2 {a}^{2} - 3b + ab[/tex]
d)
[tex] \frac{(a + b + a) \times (a + 2)}{2} = \frac{(2a + b) \times (a + 2)}{2} = \frac{2 {a}^{2} + 4a + ab + 2b }{2} [/tex]
Odpowiedź:
Pole prostokąta P = (a + 4b)(2a + 1) = 2a² + 8ab + a + 4b
Pole trójkąta = 3a * (a + 2b) = 3a² + 6ab
Pole równoległoboku = (3 - a)(2a - b) = 6a - 2a² - 3b + ab =
= - 2a² + 6a + ab - 3b
Pole trapezu = 1/2 * (a + b + a) * (a + 2) = 1/2(2a + b)(a + 2) =
= 1/2(2a² + ab + 4a + 2b) = a² + 2a + ab/2 + b