Jak wygląda postać ogólna funkcji kwadratowej?
[tex]y=ax^2+bx+c \ \ \ (a\neq0)[/tex]
a)
[tex]y=-2(x-3)^2+6\\\\y=-2(x^2-2\cdot x\cdot3+3^2)+6\\\\y=-2(x^2-6x+9)+6\\\\y=-2x^2+12x-18+6\\\\\boxed{\bold{y=-2x^2+12x-12}}[/tex]
b)
[tex]y=3(x-5)^2+9\\\\y=3(x^2-2\cdot x\cdot5+5^2)+9\\\\y=3(x^2-10x+25)+9\\\\y=3x^2-30x+75+9\\\\\boxed{\bold{y=3x^2-30x+84}}[/tex]
c)
[tex]y=\frac{1}{2}(x-2)^2+2\\\\y=\frac{1}{2}(x^2-2\cdot x\cdot2+2^2)+2\\\\y=\frac{1}{2}(x^2-4x+4)+2\\\\y=\frac{1}{2}x^2-2x+2+2\\\\\boxed{\bold{y=\frac{1}{2}x^2-2x+4}}[/tex]
d)
[tex]y=-(x-4)^2-3\\\\y=-(x^2-2\cdot x\cdot4+4^2)-3\\\\y=-(x^2-8x+16)-3\\\\y=-x^2+8x-16-3\\\\\boxed{\bold{y=-x^2+8x-19}}[/tex]
Użyto wzoru skróconego mnożenia:
[tex](a-b)^2=a^2-2ab+b^2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jak wygląda postać ogólna funkcji kwadratowej?
[tex]y=ax^2+bx+c \ \ \ (a\neq0)[/tex]
a)
[tex]y=-2(x-3)^2+6\\\\y=-2(x^2-2\cdot x\cdot3+3^2)+6\\\\y=-2(x^2-6x+9)+6\\\\y=-2x^2+12x-18+6\\\\\boxed{\bold{y=-2x^2+12x-12}}[/tex]
b)
[tex]y=3(x-5)^2+9\\\\y=3(x^2-2\cdot x\cdot5+5^2)+9\\\\y=3(x^2-10x+25)+9\\\\y=3x^2-30x+75+9\\\\\boxed{\bold{y=3x^2-30x+84}}[/tex]
c)
[tex]y=\frac{1}{2}(x-2)^2+2\\\\y=\frac{1}{2}(x^2-2\cdot x\cdot2+2^2)+2\\\\y=\frac{1}{2}(x^2-4x+4)+2\\\\y=\frac{1}{2}x^2-2x+2+2\\\\\boxed{\bold{y=\frac{1}{2}x^2-2x+4}}[/tex]
d)
[tex]y=-(x-4)^2-3\\\\y=-(x^2-2\cdot x\cdot4+4^2)-3\\\\y=-(x^2-8x+16)-3\\\\y=-x^2+8x-16-3\\\\\boxed{\bold{y=-x^2+8x-19}}[/tex]
Użyto wzoru skróconego mnożenia:
[tex](a-b)^2=a^2-2ab+b^2[/tex]