Szczegółowe wyjaśnienie:
Do rozkładania wielomianów na iloczyn czynników najczęściej stosujemy takie metody jak:
[tex]\bullet[/tex] wyciąganie wspólnego czynnika przed nawias,
[tex]\bullet[/tex] wzory skróconego mnożenia,
[tex]\bullet[/tex] deltę (Δ),
[tex]\bullet[/tex] grupowanie wyrazów.
Stosujemy wzory:
[tex]\Delta = b^{2}-4ac\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a}; \ \ \ \ \ \ x_2 = \frac{-b+\sqrt{\Delta}}{2a}[/tex]
Postać iloczynowa:
[tex]W(x) =a(x-x_1)(x-x_2)[/tex]
1.
[tex]x^{2}-x-\frac{3}{4}\\\\a = 1, \ b = -1, \ c = -\frac{3}{4}\\\\\Delta = (-1)^{2}-4\cdot1\cdot(-\frac{3}{4}) = 1+3 = 4\\\\\sqrt{\Delta} = \sqrt{4} = 2\\\\x_1 = \frac{1-2}{2} = -\frac{1}{2}; \ \ \ \ \ \ x_2 = \frac{1+2}{2} = \frac{3}{2}\\\\\boxed{x^{2}-x-\frac{3}{4} = \left(x+\frac{1}{2}\right)\left(x-\frac{3}{2}\right)}[/tex]
2.
[tex]x^{2}-x-1\\\\a = 1, \ b = -1, \ c = -1\\\\\Delta} = (-1)^{2}-4\cdot1\cdot(-1) = 1+4 = 5\\\\\sqrt{\Delta} = \sqrt{5}\\\\x_1 = \frac{1-\sqrt{5}}{2}; \ \ \ \ \ \ x_2 = \frac{1+\sqrt{5}}{2}\\\\\boxed{x^{2}-x-1 = \left(x-\frac{1-\sqrt{5}}{2}\right)\left(x-\frac{1+\sqrt{5}}{2}\right)}[/tex]
3.
[tex]x^{2}-x-3\\\\a = 1, \ b = -1, \ c = -3\\\\\Delta} = (-1)^{2}-4\cdot1\cdot(-3) = 1+12 = 13\\\\\sqrt{\Delta} = \sqrt{13}\\\\x_1 = \frac{1-\sqrt{13}}{2}; \ \ \ \ \ \ x_2 = \frac{1+\sqrt{13}}{2}\\\\\boxed{x^{2}-x-3 = \left(x-\frac{1-\sqrt{13}}{2}\right)\left(x-\frac{1+\sqrt{13}}{2}\right)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Szczegółowe wyjaśnienie:
Do rozkładania wielomianów na iloczyn czynników najczęściej stosujemy takie metody jak:
[tex]\bullet[/tex] wyciąganie wspólnego czynnika przed nawias,
[tex]\bullet[/tex] wzory skróconego mnożenia,
[tex]\bullet[/tex] deltę (Δ),
[tex]\bullet[/tex] grupowanie wyrazów.
Stosujemy wzory:
[tex]\Delta = b^{2}-4ac\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a}; \ \ \ \ \ \ x_2 = \frac{-b+\sqrt{\Delta}}{2a}[/tex]
Postać iloczynowa:
[tex]W(x) =a(x-x_1)(x-x_2)[/tex]
1.
[tex]x^{2}-x-\frac{3}{4}\\\\a = 1, \ b = -1, \ c = -\frac{3}{4}\\\\\Delta = (-1)^{2}-4\cdot1\cdot(-\frac{3}{4}) = 1+3 = 4\\\\\sqrt{\Delta} = \sqrt{4} = 2\\\\x_1 = \frac{1-2}{2} = -\frac{1}{2}; \ \ \ \ \ \ x_2 = \frac{1+2}{2} = \frac{3}{2}\\\\\boxed{x^{2}-x-\frac{3}{4} = \left(x+\frac{1}{2}\right)\left(x-\frac{3}{2}\right)}[/tex]
2.
[tex]x^{2}-x-1\\\\a = 1, \ b = -1, \ c = -1\\\\\Delta} = (-1)^{2}-4\cdot1\cdot(-1) = 1+4 = 5\\\\\sqrt{\Delta} = \sqrt{5}\\\\x_1 = \frac{1-\sqrt{5}}{2}; \ \ \ \ \ \ x_2 = \frac{1+\sqrt{5}}{2}\\\\\boxed{x^{2}-x-1 = \left(x-\frac{1-\sqrt{5}}{2}\right)\left(x-\frac{1+\sqrt{5}}{2}\right)}[/tex]
3.
[tex]x^{2}-x-3\\\\a = 1, \ b = -1, \ c = -3\\\\\Delta} = (-1)^{2}-4\cdot1\cdot(-3) = 1+12 = 13\\\\\sqrt{\Delta} = \sqrt{13}\\\\x_1 = \frac{1-\sqrt{13}}{2}; \ \ \ \ \ \ x_2 = \frac{1+\sqrt{13}}{2}\\\\\boxed{x^{2}-x-3 = \left(x-\frac{1-\sqrt{13}}{2}\right)\left(x-\frac{1+\sqrt{13}}{2}\right)}[/tex]