Odpowiedź:
a ) f ( x) = [tex]\frac{\sqrt{3-x} }{x*(x + 9 )}[/tex]
x ≠ 0 i x ≠ - 9
3 - x ≥ 0 ⇒ 3 ≥ x ⇒ x ≤ 3
więc
D = ( - ∞ ; 3 > \ { - 9, 0 }
======================
b) g ( x ) = [tex]\frac{x - 2}{x^{2} - 16} + \frac{1}{\sqrt{x} } = \frac{x - 2}{( x + 4)*(x - 4)} + \frac{1}{\sqrt{x} }[/tex]
więc x ≠ - 4 i x ≠ 4 i x > 0
Odp. D = ( 0 ; 4 ) ∪ ( 4 ; +∞ )
==========================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) f ( x) = [tex]\frac{\sqrt{3-x} }{x*(x + 9 )}[/tex]
x ≠ 0 i x ≠ - 9
3 - x ≥ 0 ⇒ 3 ≥ x ⇒ x ≤ 3
więc
D = ( - ∞ ; 3 > \ { - 9, 0 }
======================
b) g ( x ) = [tex]\frac{x - 2}{x^{2} - 16} + \frac{1}{\sqrt{x} } = \frac{x - 2}{( x + 4)*(x - 4)} + \frac{1}{\sqrt{x} }[/tex]
więc x ≠ - 4 i x ≠ 4 i x > 0
Odp. D = ( 0 ; 4 ) ∪ ( 4 ; +∞ )
==========================
Szczegółowe wyjaśnienie: