Odpowiedź:
Szczegółowe wyjaśnienie:
Zapis [tex]\sqrt[n]{a} = b[/tex] oznacza, że trzeba liczbę b pomnożyć przez siebie n razy, aby otrzymać liczbę a, przykład:
[tex]\sqrt[4]{81} = 3[/tex], ponieważ 3 * 3 *3 * 3 = 81, [tex]3^4 = 81[/tex]
[tex]\sqrt[6]{1000000} = 10[/tex], ponieważ [tex]10^6 = 1000000[/tex]
2 =
[tex]\sqrt[]{4} = \sqrt[3]{8} = \sqrt[4]{16} = \sqrt[5]{32} = \sqrt[6]{64} = \sqrt[7]{128} = \sqrt[8]{256} = \sqrt[9]{512} = \sqrt[10]{1024} \\[/tex]
3 =
[tex]\sqrt[]{9} = \sqrt[3]{27} = \sqrt[4]{81} = \sqrt[5]{243} = \sqrt[6]{729} = \sqrt[7]{2187} = \sqrt[8]{6561} = \sqrt[9]{19638} = \sqrt[10]{59049}[/tex]
a)
[tex]\sqrt[4]{16} + \sqrt[4]{81} + \sqrt[4]{256} + \sqrt[4]{625} = 2 + 3 + 4 + 5 = 14\\\\[/tex]
b)
[tex]\sqrt[4]{2} * \sqrt[4]{8} - \sqrt[4]{27} * \sqrt[4]{3} + \sqrt[4]{10000} = \sqrt[4]{2*8} - \sqrt[4]{27 * 3} + 10 =\\ \\\sqrt[4]{16} - \sqrt[4]{81} + 10 = 2 - 3 + 10 = 9\\\\[/tex]
c)
[tex]\sqrt[6]{4} * \sqrt[6]{16} - \frac{\sqrt[6]{1000} }{\sqrt[6]{0.001} } - \sqrt[5]{32} = \sqrt[6]{4 * 16} - \sqrt[6]{\frac{1000}{0.001} } - 2 = \\\\\sqrt[6]{64} - \sqrt[6]{1000000} - 2 = 2 - 10 - 2 = (-10)\\\\[/tex]
d)
[tex]\sqrt[8]{8} * \sqrt[8]{32} - \sqrt[10]{1024} + \sqrt[5]{1024} = \sqrt[8]{8 * 32} - 2 + 4 = \\\\\sqrt[8]{256} -2 + 4 = 2 - 2 + 4 = 4\\\\[/tex]
e)
[tex]2\sqrt[4]{\frac{81}{16} } - 3\sqrt[4]{\frac{256}{625} } = 2 (\frac{3}{2} ) - 3(\frac{4}{5} ) = \frac{6}{2} - \frac{12}{5} = 3 - 2\frac{2}{5} = \frac{3}{5} \\\\[/tex]
f)
[tex]6\sqrt[4]{0.0625} - 3\sqrt[4]{0.0081} = 6(0.5) - 3(0.3) = 3 - 0.9 = 2.1\\\\[/tex]
g)
[tex]\sqrt[6]{64} - \sqrt[6]{\frac{1}{64} } - \sqrt[3]{\frac{1}{64} } = 2 - \frac{1}{2} - \frac{1}{4} = 1\frac{1}{4} \\\\[/tex]
h)
[tex]\sqrt[6]{1000000} + \sqrt[8]{256} = 10 + 2 = 12\\\\[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
Zapis [tex]\sqrt[n]{a} = b[/tex] oznacza, że trzeba liczbę b pomnożyć przez siebie n razy, aby otrzymać liczbę a, przykład:
[tex]\sqrt[4]{81} = 3[/tex], ponieważ 3 * 3 *3 * 3 = 81, [tex]3^4 = 81[/tex]
[tex]\sqrt[6]{1000000} = 10[/tex], ponieważ [tex]10^6 = 1000000[/tex]
2 =
[tex]\sqrt[]{4} = \sqrt[3]{8} = \sqrt[4]{16} = \sqrt[5]{32} = \sqrt[6]{64} = \sqrt[7]{128} = \sqrt[8]{256} = \sqrt[9]{512} = \sqrt[10]{1024} \\[/tex]
3 =
[tex]\sqrt[]{9} = \sqrt[3]{27} = \sqrt[4]{81} = \sqrt[5]{243} = \sqrt[6]{729} = \sqrt[7]{2187} = \sqrt[8]{6561} = \sqrt[9]{19638} = \sqrt[10]{59049}[/tex]
a)
[tex]\sqrt[4]{16} + \sqrt[4]{81} + \sqrt[4]{256} + \sqrt[4]{625} = 2 + 3 + 4 + 5 = 14\\\\[/tex]
b)
[tex]\sqrt[4]{2} * \sqrt[4]{8} - \sqrt[4]{27} * \sqrt[4]{3} + \sqrt[4]{10000} = \sqrt[4]{2*8} - \sqrt[4]{27 * 3} + 10 =\\ \\\sqrt[4]{16} - \sqrt[4]{81} + 10 = 2 - 3 + 10 = 9\\\\[/tex]
c)
[tex]\sqrt[6]{4} * \sqrt[6]{16} - \frac{\sqrt[6]{1000} }{\sqrt[6]{0.001} } - \sqrt[5]{32} = \sqrt[6]{4 * 16} - \sqrt[6]{\frac{1000}{0.001} } - 2 = \\\\\sqrt[6]{64} - \sqrt[6]{1000000} - 2 = 2 - 10 - 2 = (-10)\\\\[/tex]
d)
[tex]\sqrt[8]{8} * \sqrt[8]{32} - \sqrt[10]{1024} + \sqrt[5]{1024} = \sqrt[8]{8 * 32} - 2 + 4 = \\\\\sqrt[8]{256} -2 + 4 = 2 - 2 + 4 = 4\\\\[/tex]
e)
[tex]2\sqrt[4]{\frac{81}{16} } - 3\sqrt[4]{\frac{256}{625} } = 2 (\frac{3}{2} ) - 3(\frac{4}{5} ) = \frac{6}{2} - \frac{12}{5} = 3 - 2\frac{2}{5} = \frac{3}{5} \\\\[/tex]
f)
[tex]6\sqrt[4]{0.0625} - 3\sqrt[4]{0.0081} = 6(0.5) - 3(0.3) = 3 - 0.9 = 2.1\\\\[/tex]
g)
[tex]\sqrt[6]{64} - \sqrt[6]{\frac{1}{64} } - \sqrt[3]{\frac{1}{64} } = 2 - \frac{1}{2} - \frac{1}{4} = 1\frac{1}{4} \\\\[/tex]
h)
[tex]\sqrt[6]{1000000} + \sqrt[8]{256} = 10 + 2 = 12\\\\[/tex]