[tex]sin^{2} \alpha +cos^{2} \alpha =1\\\\sin^{2} \alpha +(\frac{1}{4} )^{2} =1\\[/tex]
[tex]sin^{2}\alpha =1-\frac{1}{16} \\sin^{2} \alpha =\frac{15}{16} /\sqrt{}[/tex]
[tex]sin\alpha =-\frac{\sqrt{15} }{4}[/tex] (- ponieważ to 4 ćwiartka ,tam sinus jest ujemny)
[tex]tg\alpha =\frac{sin\alpha }{cos\alpha }[/tex]
[tex]tg\alpha =\frac{\frac{\sqrt{15} }{-4} }{\frac{1}{4} } =-\frac{\sqrt{15} }{4} *\frac{4}{1} =-\sqrt{15}[/tex]
[tex]ctg\alpha =\frac{1}{tg\alpha } \\ctg\alpha =\frac{1}{-\sqrt{15} } =\frac{-\sqrt{15} }{15}[/tex]
b)
[tex]tg\alpha =-3[/tex] α∈(90,180)
[tex]\frac{sin\alpha }{cos\alpha } =-3\\sin\alpha =-3cos\alpha \\sin^{2} \alpha +cos^{2} \alpha =1\\(-3cos\alpha )^{2} +cos^{2} \alpha =1[/tex]
[tex]9cos^{2} \alpha +cos^{2} \alpha =1\\10cos^{2}\alpha =1/:(10)\\ cos^{2}\alpha =\frac{1}{10} /\sqrt{}[/tex]
[tex]cos\alpha =-\frac{1}{\sqrt{10} } =-\frac{\sqrt{10} }{10}[/tex]
[tex]sin\alpha =-3cos\alpha \\sin\alpha =\frac{3\sqrt{10} }{10}[/tex]
[tex]ctg\alpha =\frac{1}{tg\alpha } \\ctg\alpha =\frac{1}{-3} =-\frac{1}{3}[/tex]
Zad3
[tex]\frac{-3cos\alpha +6sin\alpha /:(sin\alpha) }{3cos\alpha +8sin\alpha /:(sin\alpha )} =\frac{-3ctg\alpha +6}{3ctg\alpha +8} =\frac{-3*(-2)+6}{3*(-2)+8} =\frac{6+6}{-6+8} =\frac{12}{2} =6[/tex]
[tex]ctg\alpha =-2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]sin^{2} \alpha +cos^{2} \alpha =1\\\\sin^{2} \alpha +(\frac{1}{4} )^{2} =1\\[/tex]
[tex]sin^{2}\alpha =1-\frac{1}{16} \\sin^{2} \alpha =\frac{15}{16} /\sqrt{}[/tex]
[tex]sin\alpha =-\frac{\sqrt{15} }{4}[/tex] (- ponieważ to 4 ćwiartka ,tam sinus jest ujemny)
[tex]tg\alpha =\frac{sin\alpha }{cos\alpha }[/tex]
[tex]tg\alpha =\frac{\frac{\sqrt{15} }{-4} }{\frac{1}{4} } =-\frac{\sqrt{15} }{4} *\frac{4}{1} =-\sqrt{15}[/tex]
[tex]ctg\alpha =\frac{1}{tg\alpha } \\ctg\alpha =\frac{1}{-\sqrt{15} } =\frac{-\sqrt{15} }{15}[/tex]
b)
[tex]tg\alpha =-3[/tex] α∈(90,180)
[tex]\frac{sin\alpha }{cos\alpha } =-3\\sin\alpha =-3cos\alpha \\sin^{2} \alpha +cos^{2} \alpha =1\\(-3cos\alpha )^{2} +cos^{2} \alpha =1[/tex]
[tex]9cos^{2} \alpha +cos^{2} \alpha =1\\10cos^{2}\alpha =1/:(10)\\ cos^{2}\alpha =\frac{1}{10} /\sqrt{}[/tex]
[tex]cos\alpha =-\frac{1}{\sqrt{10} } =-\frac{\sqrt{10} }{10}[/tex]
[tex]sin\alpha =-3cos\alpha \\sin\alpha =\frac{3\sqrt{10} }{10}[/tex]
[tex]ctg\alpha =\frac{1}{tg\alpha } \\ctg\alpha =\frac{1}{-3} =-\frac{1}{3}[/tex]
Zad3
[tex]\frac{-3cos\alpha +6sin\alpha /:(sin\alpha) }{3cos\alpha +8sin\alpha /:(sin\alpha )} =\frac{-3ctg\alpha +6}{3ctg\alpha +8} =\frac{-3*(-2)+6}{3*(-2)+8} =\frac{6+6}{-6+8} =\frac{12}{2} =6[/tex]
[tex]ctg\alpha =-2[/tex]