Postać ogólna funkcji kwadratowej:
[tex]f(x)=ax^{2}+bx+c[/tex]
Wzory:
Δ = [tex]b^{2} -4ac[/tex]
[tex](x-1)^{2} - 5(x - 1)^{2}+6=0\\x^{2}-2x+1-5(x^{2}-2x+1)+6 =0\\x^{2}-2x+1-5x^{2}+10x-5+6=0\\-4x^{2}+8x+2=0\ \ /:2\\-2x^{2}+4x+1=0[/tex]
Δ = 4² - 4 * (-2) * 1= 16 + 8 = 24
Skoro Δ > 0, równanie będzie miało dwa rozwiązania
√Δ = √24 = [tex]\sqrt{6*4 }=2\sqrt{6}[/tex]
x₁ = (-b-√Δ)/2a = [tex]\frac{-4-2\sqrt{6} }{2*(-2)} = \frac{-4-2\sqrt{6} }{-4} = \frac{-(4+2\sqrt{6}) }{-4} = \frac{4+2\sqrt{6} }{4}[/tex]
x₂ = (-b+√Δ)/2a = [tex]\frac{-4+2\sqrt{6} }{-4}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Postać ogólna funkcji kwadratowej:
[tex]f(x)=ax^{2}+bx+c[/tex]
Wzory:
Δ = [tex]b^{2} -4ac[/tex]
[tex](x-1)^{2} - 5(x - 1)^{2}+6=0\\x^{2}-2x+1-5(x^{2}-2x+1)+6 =0\\x^{2}-2x+1-5x^{2}+10x-5+6=0\\-4x^{2}+8x+2=0\ \ /:2\\-2x^{2}+4x+1=0[/tex]
Δ = 4² - 4 * (-2) * 1= 16 + 8 = 24
Skoro Δ > 0, równanie będzie miało dwa rozwiązania
√Δ = √24 = [tex]\sqrt{6*4 }=2\sqrt{6}[/tex]
x₁ = (-b-√Δ)/2a = [tex]\frac{-4-2\sqrt{6} }{2*(-2)} = \frac{-4-2\sqrt{6} }{-4} = \frac{-(4+2\sqrt{6}) }{-4} = \frac{4+2\sqrt{6} }{4}[/tex]
x₂ = (-b+√Δ)/2a = [tex]\frac{-4+2\sqrt{6} }{-4}[/tex]