Odpowiedź:
[tex]zad.2~~\\\\\\\huge\boxed{~~Odp:~~C,~~~~x\in < -4;-2 > ~~}[/tex]
Szczegółowe wyjaśnienie:
[tex]\huge\boxed{~~\mid x\mid =\left \{ {{x~~dla~~x\geq 0} \atop {-x~~dla~~x < 0}} \right. ~~}[/tex]
[tex]\mid ax+b\mid < c[/tex] zapisujemy:[tex]ax+b < c~~\land~~ax+b > -c~~\Rightarrow~~-c < ax+b < c[/tex]
[tex]\mid ax+b\mid > c[/tex] zapisujemy: [tex]ax+b > c~~\lor~~ax+b < -c[/tex]
[tex]\mid x+3 \mid~ \leq ~1\\\\x+3~\leq ~1~~\land~~x+3~\geq ~-1\\\\~~~~~~~~~~~~~~~\Downarrow\\\\-1\leq x+3\leq 1~~\mid -3\\\\-1-3~\leq~ x+3-3~\leq ~1-3\\\\\huge\boxed{~~-4~\leq ~x~\leq~ -2~~\Rightarrow~~x\in < -4;-2 > ~~}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]zad.2~~\\\\\\\huge\boxed{~~Odp:~~C,~~~~x\in < -4;-2 > ~~}[/tex]
Szczegółowe wyjaśnienie:
[tex]\huge\boxed{~~\mid x\mid =\left \{ {{x~~dla~~x\geq 0} \atop {-x~~dla~~x < 0}} \right. ~~}[/tex]
[tex]\mid ax+b\mid < c[/tex] zapisujemy:[tex]ax+b < c~~\land~~ax+b > -c~~\Rightarrow~~-c < ax+b < c[/tex]
[tex]\mid ax+b\mid > c[/tex] zapisujemy: [tex]ax+b > c~~\lor~~ax+b < -c[/tex]
Rozwiązanie:
zad. 2
[tex]\mid x+3 \mid~ \leq ~1\\\\x+3~\leq ~1~~\land~~x+3~\geq ~-1\\\\~~~~~~~~~~~~~~~\Downarrow\\\\-1\leq x+3\leq 1~~\mid -3\\\\-1-3~\leq~ x+3-3~\leq ~1-3\\\\\huge\boxed{~~-4~\leq ~x~\leq~ -2~~\Rightarrow~~x\in < -4;-2 > ~~}[/tex]