Odpowiedź:
Szczegółowe wyjaśnienie:
a.
[tex]\left \{ {{x^2+y^2=34} \atop {x+y+2=0}} \right. \\x=-y-2\\(-y-2)^2+y^2=34\\y^2+4y+4+y^2-34=0\\2y^2+4y-30=0[/tex]
Δ=16-4*2*(-30)=16+240=256, √Δ=16
[tex]\left \{ {{y_1=\frac{-4-16}{2*2} =-5} \atop {x_1=3}}[/tex] [tex]\left \{ {{y_2=\frac{-4+16}{2*2} =3} \atop {x_2=-5}} \right[/tex]
Punkty przecięcia okręgu z prostą to A(3, -5) i B(-5, 3)
Długość cięciwy :
[tex]|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(-5-3)^2+(3-(-5))^2}=\sqrt{64+64}=8\sqrt{2}[/tex]
b.
[tex]\left \{ {{x^2+y^2=65} \atop {9x+7y-65=0}} \right. \\9x=-7y+65\\x=-\frac{7}{9}y+\frac{65}{9} \\(-\frac{7}{9}y+\frac{65}{9})^2+y^2=65\\\frac{49}{81}y^2- \frac{910}{81}y+\frac{4225}{81} +y^2-65=0\\\frac{130}{81}y^2-\frac{910}{81} y -\frac{1040}{81}=0[/tex]/*81
[tex]130y^2-910y-1040=0[/tex] /:10
[tex]13y^2-91y-104=0[/tex]
Δ=8281-4*13*(-104)=8281+5408=13689, √Δ=117
[tex]\left \{ {{y_1=\frac{91-117}{2*13}=\frac{-26}{26} =-1 } \atop {x_1=\frac{72}{9}=8 }} \right.[/tex] [tex]\left \{ {{y_2=\frac{91+117}{2*13}=\frac{208}{26} =8 } \atop {x_2=\frac{9}{9}=1 }} \right.[/tex]
Punkty przecięcia okręgu z prostą to A(8, -1) i B(1, 8)
Długość cięciwy:
[tex]|AB|=\sqrt{(1-8)^2+(8+1)^2} =\sqrt{49+81} =\sqrt{130}[/tex]
c.
[tex]\left \{ {{x^2+y^2=1040} \atop {x+2y-40=0}} \right. \\x=40-2y\\(40-2y)^2+y^2=1040\\1600-160y+4y^2+y^2-1040=0\\5y^2-160y+560=0\\[/tex]/:5
[tex]y^2-32y+112=0[/tex]
Δ=1024-4*1*112=1024-448=576, √Δ=24
[tex]\left \{ {{y_1=\frac{32-24}{2} =4} \atop {x_1=32}} \right.[/tex] [tex]\left \{ {{y_2=\frac{32+24}{2} =28} \atop {x_2=-16}} \right.[/tex]
Punkty przecięcia okręgu to A(32, 4) i B(-16, 28)
[tex]|AB|=\sqrt{(-16-32)^2+(28-4)^2}=\sqrt{2304+576} =\sqrt{2880} =\sqrt{64*45}=8\sqrt{5*9} =8*3\sqrt{5} =24\sqrt{3}[/tex]
d.
[tex]\left \{ {{x^2+y^2=\frac{1}{5} } \atop {5x+5y-3=0}} \right. \\5x=3-5y[/tex] /:5
[tex]x=\frac{3}{5} -y[/tex]
[tex](\frac{3}{5} -y)^2+y^2=\frac{1}{5} \\\frac{9}{25} -\frac{6}{5}y+y^2+y^2-\frac{1}{5} =0\\2y^2-\frac{6}{5} y+\frac{4}{25} =0[/tex] /*25
[tex]50y^2-30y+4=0[/tex] /:2
[tex]25y^2-15y+2=0[/tex]
Δ=225-4*25*2=225-200=25, √Δ=5
[tex]\left \{ {{y_1=\frac{15-5}{2*25}=\frac{1}{5} } \atop {x_1=\frac{2}{5} }} \right.[/tex] [tex]\left \{ {{y_2=\frac{15+5}{2*25}=\frac{2}{5} } \atop {x_2=\frac{1}{5} }} \right.[/tex]
Punkty przecięcia okręgu to [tex]A(\frac{2}{5}, \frac{1}{5})[/tex] i [tex]B(\frac{1}{5}, \frac{2}{5})[/tex]
[tex]|AB|=\sqrt{(\frac{1}{5}-\frac{2}{5})^2+(\frac{2}{5}-\frac{1}{5})^2} =\sqrt{\frac{1}{25}+\frac{1}{25} } =\sqrt{\frac{2}{25} } =\frac{1}{5} \sqrt{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
Szczegółowe wyjaśnienie:
a.
[tex]\left \{ {{x^2+y^2=34} \atop {x+y+2=0}} \right. \\x=-y-2\\(-y-2)^2+y^2=34\\y^2+4y+4+y^2-34=0\\2y^2+4y-30=0[/tex]
Δ=16-4*2*(-30)=16+240=256, √Δ=16
[tex]\left \{ {{y_1=\frac{-4-16}{2*2} =-5} \atop {x_1=3}}[/tex] [tex]\left \{ {{y_2=\frac{-4+16}{2*2} =3} \atop {x_2=-5}} \right[/tex]
Punkty przecięcia okręgu z prostą to A(3, -5) i B(-5, 3)
Długość cięciwy :
[tex]|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(-5-3)^2+(3-(-5))^2}=\sqrt{64+64}=8\sqrt{2}[/tex]
b.
[tex]\left \{ {{x^2+y^2=65} \atop {9x+7y-65=0}} \right. \\9x=-7y+65\\x=-\frac{7}{9}y+\frac{65}{9} \\(-\frac{7}{9}y+\frac{65}{9})^2+y^2=65\\\frac{49}{81}y^2- \frac{910}{81}y+\frac{4225}{81} +y^2-65=0\\\frac{130}{81}y^2-\frac{910}{81} y -\frac{1040}{81}=0[/tex]/*81
[tex]130y^2-910y-1040=0[/tex] /:10
[tex]13y^2-91y-104=0[/tex]
Δ=8281-4*13*(-104)=8281+5408=13689, √Δ=117
[tex]\left \{ {{y_1=\frac{91-117}{2*13}=\frac{-26}{26} =-1 } \atop {x_1=\frac{72}{9}=8 }} \right.[/tex] [tex]\left \{ {{y_2=\frac{91+117}{2*13}=\frac{208}{26} =8 } \atop {x_2=\frac{9}{9}=1 }} \right.[/tex]
Punkty przecięcia okręgu z prostą to A(8, -1) i B(1, 8)
Długość cięciwy:
[tex]|AB|=\sqrt{(1-8)^2+(8+1)^2} =\sqrt{49+81} =\sqrt{130}[/tex]
c.
[tex]\left \{ {{x^2+y^2=1040} \atop {x+2y-40=0}} \right. \\x=40-2y\\(40-2y)^2+y^2=1040\\1600-160y+4y^2+y^2-1040=0\\5y^2-160y+560=0\\[/tex]/:5
[tex]y^2-32y+112=0[/tex]
Δ=1024-4*1*112=1024-448=576, √Δ=24
[tex]\left \{ {{y_1=\frac{32-24}{2} =4} \atop {x_1=32}} \right.[/tex] [tex]\left \{ {{y_2=\frac{32+24}{2} =28} \atop {x_2=-16}} \right.[/tex]
Punkty przecięcia okręgu to A(32, 4) i B(-16, 28)
Długość cięciwy:
[tex]|AB|=\sqrt{(-16-32)^2+(28-4)^2}=\sqrt{2304+576} =\sqrt{2880} =\sqrt{64*45}=8\sqrt{5*9} =8*3\sqrt{5} =24\sqrt{3}[/tex]
d.
[tex]\left \{ {{x^2+y^2=\frac{1}{5} } \atop {5x+5y-3=0}} \right. \\5x=3-5y[/tex] /:5
[tex]x=\frac{3}{5} -y[/tex]
[tex](\frac{3}{5} -y)^2+y^2=\frac{1}{5} \\\frac{9}{25} -\frac{6}{5}y+y^2+y^2-\frac{1}{5} =0\\2y^2-\frac{6}{5} y+\frac{4}{25} =0[/tex] /*25
[tex]50y^2-30y+4=0[/tex] /:2
[tex]25y^2-15y+2=0[/tex]
Δ=225-4*25*2=225-200=25, √Δ=5
[tex]\left \{ {{y_1=\frac{15-5}{2*25}=\frac{1}{5} } \atop {x_1=\frac{2}{5} }} \right.[/tex] [tex]\left \{ {{y_2=\frac{15+5}{2*25}=\frac{2}{5} } \atop {x_2=\frac{1}{5} }} \right.[/tex]
Punkty przecięcia okręgu to [tex]A(\frac{2}{5}, \frac{1}{5})[/tex] i [tex]B(\frac{1}{5}, \frac{2}{5})[/tex]
Długość cięciwy:
[tex]|AB|=\sqrt{(\frac{1}{5}-\frac{2}{5})^2+(\frac{2}{5}-\frac{1}{5})^2} =\sqrt{\frac{1}{25}+\frac{1}{25} } =\sqrt{\frac{2}{25} } =\frac{1}{5} \sqrt{2}[/tex]