Odpowiedź:
1. a) = [tex]log_{12}(3*6*8) = log_{12} 144 = 2[/tex] bo 12² = 144
b ) = [tex]log_8 ( \frac{1}{3} *18*\frac{8}{3} ) = log_8 16 = log_{2^3} 16 = \frac{1}{3} *log_216 = \frac{1}{3} *4 = \frac{4}{3}[/tex]
[tex]log_{a^\alpha} x = \frac{1}{\alpha } *log_a x[/tex]
c ) = [tex]log_9 \frac{5*2}{90} = log_9 \frac{1}{9} = - 1[/tex] bo [tex]9^{-1} = \frac{1}{9}[/tex]
d ) = [tex]log_6 ( \frac{10*\sqrt{6} }{\frac{5}{18} } ) = log_6 36\sqrt{6} = 2,5[/tex] bo [tex]6^{2,5} = 6^2*6^{0,5} = 36\sqrt{6}[/tex]
========================================================
2.
a ) [tex]log_4 x = ... = \frac{log_2 ( 24: 12)}{log_6 3^2 + log_6 4} = \frac{log_22}{log_6 36} =\frac{1}{2}[/tex]
więc x = [tex]4^{1/2} = \sqrt{4} = 2[/tex]
==================
b ) [tex]log_8 x = ... = \frac{log_5 (3 : 75)}{log_2 ( 48 : 6)} = \frac{log_5 1/25}{log_2 8} = \frac{-2}{3}[/tex]
więc x = [tex]8^{-2/3} = ( 2^3)^{-2/3} = 2^{-2} = = \frac{1}{2^2} = \frac{1}{4}[/tex]
==================================
c ) [tex]log_{0,1} x = ... = \frac{log_3 ( 18 : 2)}{log_3 ( 6 : 18)} = \frac{log_39}{log_3 1/3} = \frac{2}{- 1} = - 2[/tex]
więc x = [tex]0,1^{-2} = 10^2 = 100[/tex]
============================
d ) [tex]log_{0,4} x = ... = \frac{log_{0,5}( 54 : 6^3)}{log_{0,1}( 4*25)} = \frac{log_{0,5} 1/4}{log_{0,1} 100} = \frac{2}{- 2} = - 1[/tex]
więc x = [tex]0,4^{-1} = ( \frac{4}{10} )^{-1} = \frac{10}{4} = 2,5[/tex]
===============================
Szczegółowe wyjaśnienie:
[tex]log_a x + log_a y = log_a ( x*y)[/tex]
[tex]log_a x - log_a y = log_a ( x : y )[/tex]
[tex]log_a x = b[/tex] ⇔ [tex]a^b = x[/tex]
====================
[tex]( \frac{a}{b} )^{-n} = ( \frac{b}{a} )^n[/tex]
-------------------
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1. a) = [tex]log_{12}(3*6*8) = log_{12} 144 = 2[/tex] bo 12² = 144
b ) = [tex]log_8 ( \frac{1}{3} *18*\frac{8}{3} ) = log_8 16 = log_{2^3} 16 = \frac{1}{3} *log_216 = \frac{1}{3} *4 = \frac{4}{3}[/tex]
[tex]log_{a^\alpha} x = \frac{1}{\alpha } *log_a x[/tex]
c ) = [tex]log_9 \frac{5*2}{90} = log_9 \frac{1}{9} = - 1[/tex] bo [tex]9^{-1} = \frac{1}{9}[/tex]
d ) = [tex]log_6 ( \frac{10*\sqrt{6} }{\frac{5}{18} } ) = log_6 36\sqrt{6} = 2,5[/tex] bo [tex]6^{2,5} = 6^2*6^{0,5} = 36\sqrt{6}[/tex]
========================================================
2.
a ) [tex]log_4 x = ... = \frac{log_2 ( 24: 12)}{log_6 3^2 + log_6 4} = \frac{log_22}{log_6 36} =\frac{1}{2}[/tex]
więc x = [tex]4^{1/2} = \sqrt{4} = 2[/tex]
==================
b ) [tex]log_8 x = ... = \frac{log_5 (3 : 75)}{log_2 ( 48 : 6)} = \frac{log_5 1/25}{log_2 8} = \frac{-2}{3}[/tex]
więc x = [tex]8^{-2/3} = ( 2^3)^{-2/3} = 2^{-2} = = \frac{1}{2^2} = \frac{1}{4}[/tex]
==================================
c ) [tex]log_{0,1} x = ... = \frac{log_3 ( 18 : 2)}{log_3 ( 6 : 18)} = \frac{log_39}{log_3 1/3} = \frac{2}{- 1} = - 2[/tex]
więc x = [tex]0,1^{-2} = 10^2 = 100[/tex]
============================
d ) [tex]log_{0,4} x = ... = \frac{log_{0,5}( 54 : 6^3)}{log_{0,1}( 4*25)} = \frac{log_{0,5} 1/4}{log_{0,1} 100} = \frac{2}{- 2} = - 1[/tex]
więc x = [tex]0,4^{-1} = ( \frac{4}{10} )^{-1} = \frac{10}{4} = 2,5[/tex]
===============================
Szczegółowe wyjaśnienie:
[tex]log_a x + log_a y = log_a ( x*y)[/tex]
[tex]log_a x - log_a y = log_a ( x : y )[/tex]
[tex]log_a x = b[/tex] ⇔ [tex]a^b = x[/tex]
====================
[tex]( \frac{a}{b} )^{-n} = ( \frac{b}{a} )^n[/tex]
-------------------