5.
A
[tex] \sqrt[3]{64} + \sqrt[3]{8} = 4 + 2 = 6 = \sqrt[3]{216} [/tex]
B
[tex] \sqrt[3]{64} - \sqrt[3]{8} = 4 - 2 = 2 = \sqrt[3]{8} [/tex]
C
[tex] \sqrt[3]{ - 8} \times \sqrt[3]{8} = - 2 \times 2 = - 4[/tex]
D
[tex] \sqrt[3]{( - 8 {)}^{2} } = \sqrt[3]{64} = 4[/tex]
POPRAWNE ZAPISY: A, D
6.
a)
[tex] \sqrt[3]{a} = \sqrt[3]{8 \times {10}^{15} } = 2 \times {10}^{5} [/tex]
FAŁSZ
b)
[tex] \sqrt[3]{ {a}^{2} } = \sqrt[3]{(8 \times {10}^{15} {)}^{2} } = \sqrt[3]{8 \times {10}^{15} {}}^{2} = (2 \times {10}^{5} {)}^{2} = {2}^{2} \times {10}^{10} = 4 \times {10}^{10} [/tex]
Wykorzystałem
[tex]\boxed{\large{ \sqrt[n]{ {a}^{m} } = \sqrt[n]{a {}}^{m} }}[/tex]
PRAWDA
7.
[tex] \sqrt[3]{500} = \sqrt[3]{125 \times 4} = 5\sqrt[3]{4} [/tex]
[tex] \sqrt[3]{4} \approx1.58[/tex]
Nasza liczba w przybliżeniu wynosi:
[tex]5 \sqrt[3]{4} = 5 \times 1.58 = 7.9[/tex]
Zatem
[tex] \large{\boxed{7 < \sqrt[3]{500} < 8}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
5.
A
[tex] \sqrt[3]{64} + \sqrt[3]{8} = 4 + 2 = 6 = \sqrt[3]{216} [/tex]
B
[tex] \sqrt[3]{64} - \sqrt[3]{8} = 4 - 2 = 2 = \sqrt[3]{8} [/tex]
C
[tex] \sqrt[3]{ - 8} \times \sqrt[3]{8} = - 2 \times 2 = - 4[/tex]
D
[tex] \sqrt[3]{( - 8 {)}^{2} } = \sqrt[3]{64} = 4[/tex]
POPRAWNE ZAPISY: A, D
6.
a)
[tex] \sqrt[3]{a} = \sqrt[3]{8 \times {10}^{15} } = 2 \times {10}^{5} [/tex]
FAŁSZ
b)
[tex] \sqrt[3]{ {a}^{2} } = \sqrt[3]{(8 \times {10}^{15} {)}^{2} } = \sqrt[3]{8 \times {10}^{15} {}}^{2} = (2 \times {10}^{5} {)}^{2} = {2}^{2} \times {10}^{10} = 4 \times {10}^{10} [/tex]
Wykorzystałem
[tex]\boxed{\large{ \sqrt[n]{ {a}^{m} } = \sqrt[n]{a {}}^{m} }}[/tex]
PRAWDA
7.
[tex] \sqrt[3]{500} = \sqrt[3]{125 \times 4} = 5\sqrt[3]{4} [/tex]
[tex] \sqrt[3]{4} \approx1.58[/tex]
Nasza liczba w przybliżeniu wynosi:
[tex]5 \sqrt[3]{4} = 5 \times 1.58 = 7.9[/tex]
Zatem
[tex] \large{\boxed{7 < \sqrt[3]{500} < 8}}[/tex]