Jawaban:
1. refleksi
2. [tex]T= \begin{pmatrix}5\\3\end{pmatrix}[/tex]
3. (-3, 5)
4. titik O (0,0)
5. x=2y + 7
Penjelasan dengan langkah-langkah:
Transformasi Geometri
Translasi (pergeseran)
[tex] \boxed{ \begin{array}{c}A(x,y) \xrightarrow{T = \binom{a}{b}}A'(x',y')\\\\ \begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}a\\b\end{pmatrix} \end{array}}[/tex]
Refleksi (pencerminan)
[tex] \small \boxed{\begin{array}{l | l} rumus & matriks \\ \hline A(x,y) \xrightarrow{\: \:M_{x}\: \:}A'(x,-y)& \begin{pmatrix}1&0\\0&-1\end{pmatrix}\\A(x,y) \xrightarrow{ \: \: M_{y} \: \: }A'(-x,y)& \begin{pmatrix}-1&0\\0&-1\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=x}\: \:}A'(y,x)& \begin{pmatrix}0&1\\1&0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=-x}\: \:}A'(-y,-x)& \begin{pmatrix}0&-1\\-1&0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{O}\: \:}A'( - x, - y)& \begin{pmatrix}-1&0 \\ 0&-1\end{pmatrix}\\A(-x,-y) \xrightarrow{\: \:M_{x=h}\: \:}A'(2h-x,y)& \begin{pmatrix}-1&0\\0&1\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}2h\\0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=h}\: \:}A'(x,2h-y) &\begin{pmatrix}1&0\\0&-1\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}0\\2h\end{pmatrix}\end{array}}[/tex]
[tex]_____________________[/tex]
penyelesaian
[tex]________[/tex]
2.
A'=A+T
[tex]\begin{pmatrix}2\\-1\end{pmatrix} =\begin{pmatrix}-3\\4\end{pmatrix} +T [/tex]
[tex]T= \begin{pmatrix}2\\-1\end{pmatrix} -\begin{pmatrix}-3\\-4\end{pmatrix} [/tex]
[tex]T= \begin{pmatrix}5\\3\end{pmatrix} [/tex]
3.
[tex]A(x,y) \xrightarrow{ \: \: M_{y} \: \: }A'(-x,y) \\ A(3,5) \xrightarrow{ \: \: M_{y} \: \: }A'(-3,5)[/tex]
4.
[tex]R( - 2,7) \xrightarrow{ \: \: M_{ ?} \: \: }R'(2, - 7) \\ \sf \: didapatkan : x = - x \: \: dan \: \: y = - y \\ A(x,y) \xrightarrow{ \: \: M_{O} \: \: }A'( - x, - y)[/tex]
maka sumbu refleksi nya adalah titik O (0, 0)
5. y=2x+7 dicerminkan terhadap garis y=x
[tex]\begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}0&1\\1&0\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}[/tex]
[tex]\begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}y\\x\end{pmatrix}[/tex]
[tex]x '= y \rightarrow y = x' \\ y' = x \rightarrow x = y'[/tex]
y=2x+7
x' = 2(y') + 7
x = 2y + 7
atau bisa ditulis x - 2y - 7 = 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
1. refleksi
2. [tex]T= \begin{pmatrix}5\\3\end{pmatrix}[/tex]
3. (-3, 5)
4. titik O (0,0)
5. x=2y + 7
Penjelasan dengan langkah-langkah:
Transformasi Geometri
Translasi (pergeseran)
[tex] \boxed{ \begin{array}{c}A(x,y) \xrightarrow{T = \binom{a}{b}}A'(x',y')\\\\ \begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}a\\b\end{pmatrix} \end{array}}[/tex]
Refleksi (pencerminan)
[tex] \small \boxed{\begin{array}{l | l} rumus & matriks \\ \hline A(x,y) \xrightarrow{\: \:M_{x}\: \:}A'(x,-y)& \begin{pmatrix}1&0\\0&-1\end{pmatrix}\\A(x,y) \xrightarrow{ \: \: M_{y} \: \: }A'(-x,y)& \begin{pmatrix}-1&0\\0&-1\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=x}\: \:}A'(y,x)& \begin{pmatrix}0&1\\1&0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=-x}\: \:}A'(-y,-x)& \begin{pmatrix}0&-1\\-1&0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{O}\: \:}A'( - x, - y)& \begin{pmatrix}-1&0 \\ 0&-1\end{pmatrix}\\A(-x,-y) \xrightarrow{\: \:M_{x=h}\: \:}A'(2h-x,y)& \begin{pmatrix}-1&0\\0&1\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}2h\\0\end{pmatrix}\\A(x,y) \xrightarrow{\: \:M_{y=h}\: \:}A'(x,2h-y) &\begin{pmatrix}1&0\\0&-1\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}+ \begin{pmatrix}0\\2h\end{pmatrix}\end{array}}[/tex]
[tex]_____________________[/tex]
penyelesaian
1. refleksi
[tex]________[/tex]
2.
A'=A+T
[tex]\begin{pmatrix}2\\-1\end{pmatrix} =\begin{pmatrix}-3\\4\end{pmatrix} +T [/tex]
[tex]T= \begin{pmatrix}2\\-1\end{pmatrix} -\begin{pmatrix}-3\\-4\end{pmatrix} [/tex]
[tex]T= \begin{pmatrix}5\\3\end{pmatrix} [/tex]
[tex]________[/tex]
3.
[tex]A(x,y) \xrightarrow{ \: \: M_{y} \: \: }A'(-x,y) \\ A(3,5) \xrightarrow{ \: \: M_{y} \: \: }A'(-3,5)[/tex]
[tex]________[/tex]
4.
[tex]R( - 2,7) \xrightarrow{ \: \: M_{ ?} \: \: }R'(2, - 7) \\ \sf \: didapatkan : x = - x \: \: dan \: \: y = - y \\ A(x,y) \xrightarrow{ \: \: M_{O} \: \: }A'( - x, - y)[/tex]
maka sumbu refleksi nya adalah titik O (0, 0)
[tex]________[/tex]
5. y=2x+7 dicerminkan terhadap garis y=x
[tex]\begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}0&1\\1&0\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}[/tex]
[tex]\begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix}y\\x\end{pmatrix}[/tex]
[tex]x '= y \rightarrow y = x' \\ y' = x \rightarrow x = y'[/tex]
y=2x+7
x' = 2(y') + 7
x = 2y + 7
atau bisa ditulis x - 2y - 7 = 0