Jawaban:
limit tak hingga
lim x→∞ a/xⁿ = 0
maka:
lim x→∞ (x²-2x-1)/(3x²+6x-1) → bagi dgn variabel pangkat tertinggi yaitu x²
= (x²/x² - 2x/x² - 1/x²)/(3x²/x² +6x/x² -1/x²)
= (1 - 2/x - 1/x²)/(3 +6/x - 1/x²)
= (1-0-0)/(3+0-0)
= 1/3
lim x→∞ (x² - 2x - 1)/(3x² + 6x - 1)
= lim x→∞ x²(1 - 2/x - 1/x²) / x²(3 + 6/x - 1/x²)
= lim x→∞ (1 - 2/x - 1/x²) / (3 + 6/x - 1/x²)
= (1 - 2/∞ - 1/∞) / (3 + 6/∞ - 1/∞)
= (1 - 0 - 0)/(3 + 0 - 0)
atau
cara pada lampiran
derajat sama
lihat koefisien
lim x→∞ (1x² - 2x - 1)/(3x² + 6x - 1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
limit tak hingga
lim x→∞ a/xⁿ = 0
maka:
lim x→∞ (x²-2x-1)/(3x²+6x-1) → bagi dgn variabel pangkat tertinggi yaitu x²
= (x²/x² - 2x/x² - 1/x²)/(3x²/x² +6x/x² -1/x²)
= (1 - 2/x - 1/x²)/(3 +6/x - 1/x²)
= (1-0-0)/(3+0-0)
= 1/3
Verified answer
limit tak hingga
lim x→∞ (x² - 2x - 1)/(3x² + 6x - 1)
= lim x→∞ x²(1 - 2/x - 1/x²) / x²(3 + 6/x - 1/x²)
= lim x→∞ (1 - 2/x - 1/x²) / (3 + 6/x - 1/x²)
= (1 - 2/∞ - 1/∞) / (3 + 6/∞ - 1/∞)
= (1 - 0 - 0)/(3 + 0 - 0)
= 1/3
atau
cara pada lampiran
derajat sama
lihat koefisien
lim x→∞ (1x² - 2x - 1)/(3x² + 6x - 1)
= 1/3