Jawab:
a). definisi : cos (a - b) = cos a cos b + sin a sin b
√2 cos ( π/4 - x ) = sin x cos x
√2 (cos π/4 cos x + sin π/4 sin x) = sin x cos x
√2 ( ¹/₂√2 cos x + ¹/₂√2 sin x) = sin x cos x
cos x + sin x = sin x cos x --> (tidak terbukti kesamaan)
cos x + sin x - sin x cos x = 0
cos x + sin x (1 - cos x) = 0
sin x (1 - cos x) = - cos x
- tan x (1 - cos x) = 0
- tan x = 0 1 - cos x = 0
tan x = 0 cos x = 1
x = 0, π dan 2π x = 0 dan 2π
Hp { 0, π dan 2π }
∵ √2 cos ( π/4 - x ) = sin x cos x tidak terbukti kesamaan,
namun memiliki Hp { 0, π dan 2π }
b) definisi : sin (a + b) = sin a cos b + cos a sin b
cos (a + b) = cos a cos b - sin a sin b
sin (π/6 + x ) + cos (π/3 + x) = cos x
[sin π/6 cos x + cos π/6 sin x ] + [ cos π/3 cos x - sin π/3 sin x ] = cos x
[ ¹/₂ cos x + ¹/₂√3 sin x ] + [ ¹/₂ cos x - ¹/₂√3 sin x ] = cos x
¹/₂ cos x + ¹/₂ cos x = cos x
cos x = cos x
terbukti
∵ sin (π/6 + x ) + cos (π/3 + x) = cos x terbukti kesamaan
Penjelasan dengan langkah-langkah:
sin π/4 = sin 45 = ¹/₂√2
cos π/4 = cos 45 = ¹/₂√2
sin π/6 = sin 30 = ¹/₂
cos π/6 = cos 30 = ¹/₂√3
sin π/3 = sin 60 = ¹/₂√3
cos π/3 = cos 60 = ¹/₂
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
a). definisi : cos (a - b) = cos a cos b + sin a sin b
√2 cos ( π/4 - x ) = sin x cos x
√2 (cos π/4 cos x + sin π/4 sin x) = sin x cos x
√2 ( ¹/₂√2 cos x + ¹/₂√2 sin x) = sin x cos x
cos x + sin x = sin x cos x --> (tidak terbukti kesamaan)
cos x + sin x - sin x cos x = 0
cos x + sin x (1 - cos x) = 0
sin x (1 - cos x) = - cos x
- tan x (1 - cos x) = 0
- tan x = 0 1 - cos x = 0
tan x = 0 cos x = 1
x = 0, π dan 2π x = 0 dan 2π
Hp { 0, π dan 2π }
∵ √2 cos ( π/4 - x ) = sin x cos x tidak terbukti kesamaan,
namun memiliki Hp { 0, π dan 2π }
b) definisi : sin (a + b) = sin a cos b + cos a sin b
cos (a + b) = cos a cos b - sin a sin b
sin (π/6 + x ) + cos (π/3 + x) = cos x
[sin π/6 cos x + cos π/6 sin x ] + [ cos π/3 cos x - sin π/3 sin x ] = cos x
[ ¹/₂ cos x + ¹/₂√3 sin x ] + [ ¹/₂ cos x - ¹/₂√3 sin x ] = cos x
¹/₂ cos x + ¹/₂ cos x = cos x
cos x = cos x
terbukti
∵ sin (π/6 + x ) + cos (π/3 + x) = cos x terbukti kesamaan
Penjelasan dengan langkah-langkah:
sin π/4 = sin 45 = ¹/₂√2
cos π/4 = cos 45 = ¹/₂√2
sin π/6 = sin 30 = ¹/₂
cos π/6 = cos 30 = ¹/₂√3
sin π/3 = sin 60 = ¹/₂√3
cos π/3 = cos 60 = ¹/₂