[tex]\begin{aligned} \displaystyle\rm~ {xy}^{5} . {xy}^{5} & = \displaystyle\rm~{x}^{1 + 1} {y}^{5 + 5} \\ & = \displaystyle\rm~ {x}^{2}{y}^{10} \end{aligned}[/tex]
[tex]\begin{aligned} \displaystyle\rm~ {x}^{10} {y}^{5} \div {xy}^{4} & = \displaystyle\rm~ {x}^{10 - 1} {y}^{5 - 4} \\ & = \displaystyle\rm~ {x}^{9} y \end{aligned}[/tex]
Materi : Bentuk Aljabar
xy⁵ . xy⁵ = x¹+¹ . y⁵+⁵ = x² . y¹⁰ = x²y¹⁰
x¹⁰y⁵ ÷ xy⁴ = x¹⁰-¹ . y⁵-⁴ = x⁹ . y = x⁹y
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\begin{aligned} \displaystyle\rm~ {xy}^{5} . {xy}^{5} & = \displaystyle\rm~{x}^{1 + 1} {y}^{5 + 5} \\ & = \displaystyle\rm~ {x}^{2}{y}^{10} \end{aligned}[/tex]
________________
[tex]\begin{aligned} \displaystyle\rm~ {x}^{10} {y}^{5} \div {xy}^{4} & = \displaystyle\rm~ {x}^{10 - 1} {y}^{5 - 4} \\ & = \displaystyle\rm~ {x}^{9} y \end{aligned}[/tex]
Materi : Bentuk Aljabar
xy⁵ . xy⁵ = x¹+¹ . y⁵+⁵ = x² . y¹⁰ = x²y¹⁰
x¹⁰y⁵ ÷ xy⁴ = x¹⁰-¹ . y⁵-⁴ = x⁹ . y = x⁹y
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]