Jawabannya f'(x) = 10x√x - 4/x³ - 3
Ingat rumus turunan berikut :
f(x) = ax^n → f'(x) = n·a·x^(n-1)
Konsep eksponen :
1/a^n = a^(-n)
√a = a^(1/2)
a^b · a^c= a^(b+c)
Pembahasannya :
f(x) = 4x²√x + 2/x² - 3x
= 4x²·x^(1/2) + 2·x^(-2) - 3x
= 4·x^(2 + 1/2) + 2·x^(-2) - 3x
= 4·x^(4/2 + 1/2) + 2·x^(-2) - 3x
= 4·x^(5/2) + 2·x^(-2) - 3x
f'(x) = (5/2)·4·x^(5/2 - 1) + (-2) ·2·x^(-2-1) - 3
= 10·x^(5/2 - 2/2) - 4·x^(-3) - 3
= 10x^(3/2) - 4/x³ - 3
= 10x^(2/2 + 1/2) - 4/x³ - 3
= 10x^(1 + 1/2) - 4/x³ - 3
= 10·x·x^(1/2) - 4/x³ - 3
= 10x√x - 4/x³ - 3
Jadi turunan pertama fungsi di atas f'(x) = 10x√x - 4/x³ - 3
Terimakasih sudah bertanya
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawabannya f'(x) = 10x√x - 4/x³ - 3
Ingat rumus turunan berikut :
f(x) = ax^n → f'(x) = n·a·x^(n-1)
Konsep eksponen :
1/a^n = a^(-n)
√a = a^(1/2)
a^b · a^c= a^(b+c)
Pembahasannya :
f(x) = 4x²√x + 2/x² - 3x
= 4x²·x^(1/2) + 2·x^(-2) - 3x
= 4·x^(2 + 1/2) + 2·x^(-2) - 3x
= 4·x^(4/2 + 1/2) + 2·x^(-2) - 3x
= 4·x^(5/2) + 2·x^(-2) - 3x
f'(x) = (5/2)·4·x^(5/2 - 1) + (-2) ·2·x^(-2-1) - 3
= 10·x^(5/2 - 2/2) - 4·x^(-3) - 3
= 10x^(3/2) - 4/x³ - 3
= 10x^(2/2 + 1/2) - 4/x³ - 3
= 10x^(1 + 1/2) - 4/x³ - 3
= 10·x·x^(1/2) - 4/x³ - 3
= 10x√x - 4/x³ - 3
Jadi turunan pertama fungsi di atas f'(x) = 10x√x - 4/x³ - 3
Terimakasih sudah bertanya