Respuesta:
[tex]x1 = - 7 \\ x2 = - 8[/tex]
Explicación paso a paso:
[tex] {x}^{2} + 15x + 56[/tex]
a=1
b=15
c=56
Formula General
[tex]x = \frac{ - b (+ - )\sqrt[]{{b }^{2} - 4ac } }{2a} [/tex]
[tex]x = \frac{ - 15( + - ) \sqrt{(15) {}^{2} - 4 \times 1 \times 56} }{2 \times 1} [/tex]
[tex]x = \frac{ - 15 ( + - )\sqrt{225 - 224} }{2} [/tex]
[tex]x 1= \frac{ - 15 + \sqrt{1} }{2} \\ x 2= \frac{ - 15 - \sqrt{1} }{2} [/tex]
[tex]x1 = \frac{ - 15 + 1}{2} \\ x2 = \frac{ - 15 - 1}{ 2} [/tex]
[tex]x1 = \frac{ - 14}{2} \\ x2 = \frac{ - 16}{2} [/tex]
Espero te sirva, saludos.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]x1 = - 7 \\ x2 = - 8[/tex]
Explicación paso a paso:
[tex] {x}^{2} + 15x + 56[/tex]
a=1
b=15
c=56
Formula General
[tex]x = \frac{ - b (+ - )\sqrt[]{{b }^{2} - 4ac } }{2a} [/tex]
[tex]x = \frac{ - 15( + - ) \sqrt{(15) {}^{2} - 4 \times 1 \times 56} }{2 \times 1} [/tex]
[tex]x = \frac{ - 15 ( + - )\sqrt{225 - 224} }{2} [/tex]
[tex]x 1= \frac{ - 15 + \sqrt{1} }{2} \\ x 2= \frac{ - 15 - \sqrt{1} }{2} [/tex]
[tex]x1 = \frac{ - 15 + 1}{2} \\ x2 = \frac{ - 15 - 1}{ 2} [/tex]
[tex]x1 = \frac{ - 14}{2} \\ x2 = \frac{ - 16}{2} [/tex]
[tex]x1 = - 7 \\ x2 = - 8[/tex]
Espero te sirva, saludos.