Jawaban:
[tex] \displaystyle \lim_{x \to3} \frac{2 {x}^{2} - 7x + 3 }{ {x}^{2} + x - 12} = \bold{\frac{5}{7} }[/tex]
Penjelasan dengan langkah-langkah:
nih sy kasih tau
[tex] \displaystyle \lim_{x \to3} \frac{2 {x}^{2} - 7x + 3 }{ {x}^{2} + x - 12} [/tex]
2x² - 7x + 3 difaktorkan:
= 2x² - 6x - x + 3
= (2x - 1)(x - 3)
x² + x - 12 difaktorkan:
= x² + 4x - 3x - 12
= (x + 4)(x - 3)
Jadi...
[tex] = \displaystyle \lim_{x \to3} \frac{(2x - 1)(x - 3) }{ (x + 4)(x - 3)} [/tex]
[tex] = \displaystyle \lim_{x \to3} \frac{(2x - 1) \cancel{(x - 3) }}{ (x + 4) \cancel{(x - 3)}} [/tex]
[tex] = \displaystyle \lim_{x \to3} \frac{2x - 1 }{ x + 4} [/tex]
[tex] = \displaystyle \frac{2(3) - 1}{3 + 4} [/tex]
[tex] = \displaystyle \frac{6 - 1}{7} [/tex]
[tex] = \displaystyle \frac{5}{7} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
[tex] \displaystyle \lim_{x \to3} \frac{2 {x}^{2} - 7x + 3 }{ {x}^{2} + x - 12} = \bold{\frac{5}{7} }[/tex]
Penjelasan dengan langkah-langkah:
nih sy kasih tau
[tex] \displaystyle \lim_{x \to3} \frac{2 {x}^{2} - 7x + 3 }{ {x}^{2} + x - 12} [/tex]
2x² - 7x + 3 difaktorkan:
= 2x² - 6x - x + 3
= (2x - 1)(x - 3)
x² + x - 12 difaktorkan:
= x² + 4x - 3x - 12
= (x + 4)(x - 3)
Jadi...
[tex] \displaystyle \lim_{x \to3} \frac{2 {x}^{2} - 7x + 3 }{ {x}^{2} + x - 12} [/tex]
[tex] = \displaystyle \lim_{x \to3} \frac{(2x - 1)(x - 3) }{ (x + 4)(x - 3)} [/tex]
[tex] = \displaystyle \lim_{x \to3} \frac{(2x - 1) \cancel{(x - 3) }}{ (x + 4) \cancel{(x - 3)}} [/tex]
[tex] = \displaystyle \lim_{x \to3} \frac{2x - 1 }{ x + 4} [/tex]
[tex] = \displaystyle \frac{2(3) - 1}{3 + 4} [/tex]
[tex] = \displaystyle \frac{6 - 1}{7} [/tex]
[tex] = \displaystyle \frac{5}{7} [/tex]