[tex]\Large\text{$\int$}(5x^3+2x^2-5x+\frac1x-\frac2{x^2})\,dx=\\\\ = \Large\text{$\int$}5x^3\,dx+\Large\text{$\int$}2x^2\,dx-\Large\text{$\int$}5x\,dx + \Large\text{$\int$}\frac1x\,dx-\Large\text{$\int$}\frac2{x^2}\,dx=\\\\ = 5\Large\text{$\int$}x^3\,dx+2\Large\text{$\int$}x^2\,dx-5\Large\text{$\int$}x\,dx + \Large\text{$\int$}\frac1x\,dx-2\Large\text{$\int$}\frac1{x^2}\,dx=\\\\= 5\cdot\frac14x^4+2\cdot\frac13x^3-5\cdot\frac12x^2+ln|x|-2\cdot(-\frac1x)+C=\\\\= \frac54x^4+\frac23x^3-\frac52x^2+ln|x|+\frac2x+C[/tex]
Korzystamy z:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\Large\text{$\int$}(5x^3+2x^2-5x+\frac1x-\frac2{x^2})\,dx=\\\\ = \Large\text{$\int$}5x^3\,dx+\Large\text{$\int$}2x^2\,dx-\Large\text{$\int$}5x\,dx + \Large\text{$\int$}\frac1x\,dx-\Large\text{$\int$}\frac2{x^2}\,dx=\\\\ = 5\Large\text{$\int$}x^3\,dx+2\Large\text{$\int$}x^2\,dx-5\Large\text{$\int$}x\,dx + \Large\text{$\int$}\frac1x\,dx-2\Large\text{$\int$}\frac1{x^2}\,dx=\\\\= 5\cdot\frac14x^4+2\cdot\frac13x^3-5\cdot\frac12x^2+ln|x|-2\cdot(-\frac1x)+C=\\\\= \frac54x^4+\frac23x^3-\frac52x^2+ln|x|+\frac2x+C[/tex]
Korzystamy z: