Respuesta:
Aplicando la fórmula general:
[tex]x = \frac{ - {b}^{} + - \sqrt{ {b}^{2} - 4ac } }{2a} \\ x = \frac{ - (2) + - \sqrt{ {(2)}^{2} - 4(1)( - 15)} }{2} \\ x = \frac{ - 2 + - \sqrt{4 + 60} } {2} \\ x = \frac{ - 2 + - \sqrt{64} }{2} \\ x = \frac{ - 2 + - 8}{2} \\ x = \frac{ - 2 + 8}{2} = x = \frac{6}{2} = x = 3 \\ x = \frac{ - 2 - 8}{2} = x = \frac{ - 10}{2} = x = - 5[/tex]
Solución 1: 3
Solución 2: -5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Aplicando la fórmula general:
[tex]x = \frac{ - {b}^{} + - \sqrt{ {b}^{2} - 4ac } }{2a} \\ x = \frac{ - (2) + - \sqrt{ {(2)}^{2} - 4(1)( - 15)} }{2} \\ x = \frac{ - 2 + - \sqrt{4 + 60} } {2} \\ x = \frac{ - 2 + - \sqrt{64} }{2} \\ x = \frac{ - 2 + - 8}{2} \\ x = \frac{ - 2 + 8}{2} = x = \frac{6}{2} = x = 3 \\ x = \frac{ - 2 - 8}{2} = x = \frac{ - 10}{2} = x = - 5[/tex]
Solución 1: 3
Solución 2: -5