Materi : Fungsi dan Relasi
f(x) = 2x + 1
g(x) = ( x + 3 )/( x² + 1 )
h(x) = √x
_________________/
= f(g(h(x)))
= f(g(√x))
= f( [ √x + 3 ]/[ x + 1 ] )
= ( √[ 2x + 1 ] + 3 )/( 2x + 2 )
= g(h(f(x)))
= g(h( 2x + 1 ))
= g( √[2x+1] )
= ( √[2x+1] + 3 )/( 2x + 2 )
= h(g(f(x)))
= h(g(2x+1)
= h( [ 2x + 4 ]/[ 2x + 2 ] )
= √( [x+2]/[x+1] )
= f(h(g(x)))
= f(h( [x+3]/[x²+1] ))
= f( √( [x+3]/[x²+1] ))
= 2√( [x+3]/[x²+1] ) + 1
= g(f(h(x)))
= g(f(√x))
= g( 2√x + 1 )
= [ 2√x + 4 ]/[ 4x + 4√x + 2 ]
= [ √x + 2 ]/[ 2x + 2√x + 1 ]
= h(g( 2x + 1 ))
= h( [ 2x + 4 ]/[ 4x² + 4x + 2 ] )
= √( [x+2]/[2x²+2x+1] )
Semoga bisa membantu
[tex] \boxed{ \colorbox{navy}{ \sf{ \color{lightblue}{ Answer\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Materi : Fungsi dan Relasi
f(x) = 2x + 1
g(x) = ( x + 3 )/( x² + 1 )
h(x) = √x
_________________/
A. ( f o g o h )(x)
= f(g(h(x)))
= f(g(√x))
= f( [ √x + 3 ]/[ x + 1 ] )
= ( √[ 2x + 1 ] + 3 )/( 2x + 2 )
B. ( g o h o f )(x)
= g(h(f(x)))
= g(h( 2x + 1 ))
= g( √[2x+1] )
= ( √[2x+1] + 3 )/( 2x + 2 )
C. ( h o g o f )(x)
= h(g(f(x)))
= h(g(2x+1)
= h( [ 2x + 4 ]/[ 2x + 2 ] )
= √( [x+2]/[x+1] )
D. ( f o h o g )(x)
= f(h(g(x)))
= f(h( [x+3]/[x²+1] ))
= f( √( [x+3]/[x²+1] ))
= 2√( [x+3]/[x²+1] ) + 1
E. ( g o f o h )(x)
= g(f(h(x)))
= g(f(√x))
= g( 2√x + 1 )
= [ 2√x + 4 ]/[ 4x + 4√x + 2 ]
= [ √x + 2 ]/[ 2x + 2√x + 1 ]
F. ( h o g o f )(x)
= h(g(f(x)))
= h(g( 2x + 1 ))
= h( [ 2x + 4 ]/[ 4x² + 4x + 2 ] )
= √( [x+2]/[2x²+2x+1] )
Semoga bisa membantu
[tex] \boxed{ \colorbox{navy}{ \sf{ \color{lightblue}{ Answer\:by\: BLUEBRAXGEOMETRY}}}} [/tex]