Ghinashoda
L i m √(3x-2) - x = l i m (√(3x-2)-x)(√(3x-2)+x) x⇒2 x²-7x+10 x⇒2 (x²-7x-10)(√(3x-2)+x) = l i m (-x² + 3x - 2) x⇒2 (x-2)(x-5)(√(3x-2)+x) = l i m (x - 2)(-x + 1) x⇒3 (x-2)(x-5)(√(3x-2)+x) = l i m (- x + 1) x⇒2 (x-5((√(3x-2)+x) = - 2 + 1 (2-5)(√(6-2) + 2) = -1 -3(2+2) = -1/-12 = 1/12
x⇒2 x²-7x+10 x⇒2 (x²-7x-10)(√(3x-2)+x)
= l i m (-x² + 3x - 2)
x⇒2 (x-2)(x-5)(√(3x-2)+x)
= l i m (x - 2)(-x + 1)
x⇒3 (x-2)(x-5)(√(3x-2)+x)
= l i m (- x + 1)
x⇒2 (x-5((√(3x-2)+x)
= - 2 + 1
(2-5)(√(6-2) + 2)
= -1
-3(2+2)
= -1/-12 = 1/12